首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   0篇
航空   8篇
航天技术   19篇
航天   23篇
  2021年   6篇
  2019年   1篇
  2018年   1篇
  2014年   5篇
  2013年   1篇
  2011年   11篇
  2010年   1篇
  2009年   4篇
  2005年   1篇
  2003年   2篇
  2001年   1篇
  1999年   2篇
  1997年   1篇
  1995年   2篇
  1993年   1篇
  1991年   2篇
  1989年   2篇
  1987年   1篇
  1985年   2篇
  1983年   3篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
21.
In this paper a low-altitude orbit-to-orbit minimum-fuel transfer is discussed. The spacecraft consists of a high-thrust solid stage and a low-thrust liquid stage. The thrust acceleration ratio is greater than 500. Both initial and final orbits are circular but non-coplanar. In particular, altitudes of 300 and 500–600 km together with an inclination difference of about 16 deg are considered. J2 and drag perturbations and flight constraints are taken into account. The current discussion is centred on the nominal trajectory of a case of real interest.  相似文献   
22.
Some results, recently obtained from laboratory experiments of ion irradiation of ice mixtures containing H, C, N, and O, are here summarized. They are relevant to the formation and evolution of complex organics on interstellar dust, comets and other small bodies in the external Solar System. In particular the formation of CN-bearing species is discussed. Interstellar dust incorporated into primitive Solar System bodies and subsequently delivered to the early Earth, may have contributed to the origin of life. The delivery of CN-bearing species seems to have been necessary because molecules containing the cyanogen bond are difficult to be produced in an environment that is not strongly reducing as that of the early Earth probably was. Moreover we report on an ongoing research program concerning the interaction between refractory materials produced by ion irradiation of simple ices and biological materials (amino acids, proteins, cells).  相似文献   
23.
24.
Ion irradiation of carbon containing ices produces several effects among which the formation of complex molecules and even refractory organic materials whose spectral color and molecular complexity both depend on the amount of deposited energy. Here results from laboratory experiments are summarized. Their relevance for the formation and evolution of simple molecules and complex organic materials on planetary bodies in the external Solar System is outlined.  相似文献   
25.
The heliocentric transfer of a solar sail-based spacecraft is usually studied from an optimal perspective, by looking for the control law that minimizes the total flight time. The optimal control problem can be solved either with an indirect approach, whose solution is difficult to obtain due to its sensitivity to an initial guess of the costates, or with a direct method, which requires a good estimate of a feasible (guess) trajectory. This work presents a procedure to generate an approximate optimal trajectory through a finite Fourier series. The minimum time problem is solved using a nonlinear programming solver, in which the optimization parameters are the coefficients of the Fourier series and the positions of the spacecraft along the initial and target orbits. Suitable constraints are enforced on the direction and magnitude of the sail propulsive acceleration vector in order to obtain feasible solutions. A comparison with the numerical results from an indirect approach shows that the proposed method provides a good approximation of the optimal trajectory with a small computational effort.  相似文献   
26.
Space vehicles are often characterized by highly flexible appendages, with low natural frequencies which can generate coupling phenomena during orbital maneuvering. The stability and delay margins of the controlled system are deeply affected by the presence of bodies with different elastic properties, assembled to form a complex multibody system. As a consequence, unstable behavior can arise. In this paper the problem is first faced from a numerical point of view, developing accurate multibody mathematical models, as well as relevant navigation and control algorithms. One of the main causes of instability is identified with the unavoidable presence of time delays in the GNC loop. A strategy to compensate for these delays is elaborated and tested using the simulation tool, and finally validated by means of a free floating platform, replicating the flexible spacecraft attitude dynamics (single axis rotation). The platform is equipped with thrusters commanded according to the on–off modulation of the Linear Quadratic Regulator (LQR) control law. The LQR is based on the estimate of the full state vector, i.e. including both rigid – attitude – and elastic variables, that is possible thanks to the on line measurement of the flexible displacements, realized by processing the images acquired by a dedicated camera. The accurate mathematical model of the system and the rigid and elastic measurements enable a prediction of the state, so that the control is evaluated taking the predicted state relevant to a delayed time into account. Both the simulations and the experimental campaign demonstrate that by compensating in this way the time delay, the instability is eliminated, and the maneuver is performed accurately.  相似文献   
27.
This paper proposes an approach that makes use of two different techniques to sense and identify both the rigid attitude motion and the flexible dynamics of a manipulator. With the first technique, an accurate attitude motion determination, based on the use of a global navigation satellite systems (GNSS) signals, is performed. For this purpose, some antennas are placed on the manipulator in order to obtain the observable phase of the GNSS signal. The second technique, based on the use of accelerometer sensors, is used in order to identify the dynamic signature during the motion of the flexible link. Specifically, the modal parameters are estimated using data recorded from accelerometers, conveniently placed on the structure, by means of an output-only based approach. The developed algorithms used for both the attitude estimation and the output-only modal analysis are validated by experimental activities carried out on an in-house testbed representing a two flexible arm manipulator.  相似文献   
28.
The deformation of the solar-sail membrane is an important factor for causing inaccuracies in the solar-sail missions. This paper describes the solar sail under deformation by using a new modelling technique based on point cloud and triangular mesh generation. Two types of deformation, stemming from wrinkling and billowing, are modelled. The changes in the solar radiation pressure force and the moment caused by deformation are calculated and compared to the ideal non-deformed case. The heliocentric spiral trajectory and the orbital angular momentum reversal trajectory are taken as examples to quantify the influence of the deformation from an orbit point of view. Additionally, point cloud simplification, based on the normal vector and bounding box, is utilized to simplify the original deformed-sail model. It involves a reasonable reduction and renewal of the points in the model considering the variation of surface curvature. The simplification and its modelling accuracy are numerically investigated as well as computational efficiency.  相似文献   
29.
We report the first telemetered spaceflight science results from the orbiting Space Environment Survivability of Living Organisms (SESLO) experiment, executed by one of the two 10?cm cube-format payloads aboard the 5.5?kg Organism/Organic Exposure to Orbital Stresses (O/OREOS) free-flying nanosatellite. The O/OREOS spacecraft was launched successfully to a 72° inclination, 650?km Earth orbit on 19 November 2010. This satellite provides access to the radiation environment of space in relatively weak regions of Earth's protective magnetosphere as it passes close to the north and south magnetic poles; the total dose rate is about 15 times that in the orbit of the International Space Station. The SESLO experiment measures the long-term survival, germination, and growth responses, including metabolic activity, of Bacillus subtilis spores exposed to the microgravity, ionizing radiation, and heavy-ion bombardment of its high-inclination orbit. Six microwells containing wild-type (168) and six more containing radiation-sensitive mutant (WN1087) strains of dried B. subtilis spores were rehydrated with nutrient medium after 14 days in space to allow the spores to germinate and grow. Similarly, the same distribution of organisms in a different set of microwells was rehydrated with nutrient medium after 97 days in space. The nutrient medium included the redox dye Alamar blue, which changes color in response to cellular metabolic activity. Three-color transmitted intensity measurements of all microwells were telemetered to Earth within days of each of the 48?h growth experiments. We report here on the evaluation and interpretation of these spaceflight data in comparison to delayed-synchronous laboratory ground control experiments.  相似文献   
30.
Accurate estimations of the health risks to astronauts due to space radiation exposure are necessary for future lunar and Mars missions. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons (less than several hundred MeV); and galactic cosmic rays (GCR), which include high-energy protons and heavy ions. While the frequency distribution of SPEs depends strongly upon the phase within the solar activity cycle, the individual SPE occurrences themselves are random in nature. A solar modulation model has been developed for the temporal characterization of the GCR environment, which is represented by the deceleration potential, ?. The risk of radiation exposure to astronauts as well as to hardware from SPEs during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern for radiation protection. To support the probabilistic risk assessment for EVAs, which could be up to 15% of crew time2 on lunar missions, we estimated the probability of SPE occurrence as a function of solar cycle phase using a non-homogeneous Poisson model [1] to fit the historical database of measurements of protons with energy>30 MeV, Φ30. The resultant organ doses and dose equivalents, as well as effective whole body doses, for acute and cancer risk estimations are analyzed for a conceptual habitat module and for a lunar rover during space missions of defined durations. This probabilistic approach to radiation risk assessment from SPE and GCR is in support of mission design and operational planning for future manned space exploration missions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号