首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7074篇
  免费   17篇
  国内免费   38篇
航空   3274篇
航天技术   2617篇
综合类   27篇
航天   1211篇
  2021年   65篇
  2019年   45篇
  2018年   140篇
  2017年   92篇
  2016年   82篇
  2014年   158篇
  2013年   193篇
  2012年   183篇
  2011年   279篇
  2010年   187篇
  2009年   302篇
  2008年   360篇
  2007年   196篇
  2006年   171篇
  2005年   206篇
  2004年   206篇
  2003年   237篇
  2002年   144篇
  2001年   220篇
  2000年   149篇
  1999年   169篇
  1998年   197篇
  1997年   146篇
  1996年   185篇
  1995年   241篇
  1994年   216篇
  1993年   124篇
  1992年   182篇
  1991年   70篇
  1990年   67篇
  1989年   154篇
  1988年   60篇
  1987年   57篇
  1986年   73篇
  1985年   226篇
  1984年   173篇
  1983年   140篇
  1982年   173篇
  1981年   202篇
  1980年   62篇
  1979年   50篇
  1978年   59篇
  1977年   54篇
  1976年   46篇
  1975年   42篇
  1974年   52篇
  1973年   31篇
  1972年   34篇
  1970年   40篇
  1969年   39篇
排序方式: 共有7129条查询结果,搜索用时 418 毫秒
81.
Aeolian (wind) processes can transport particles over large distances on Mars, leading to the modification or removal of surface features, formation of new landforms, and mantling or burial of surfaces. Erosion of mantling deposits by wind deflation can exhume older surfaces. These processes and their effects on the surface must be taken into account in using impact crater statistics to derive chronologies on Mars. In addition, mapping the locations, relative ages, and orientations of aeolian features can provide insight into Martian weather, climate, and climate history.  相似文献   
82.
The computation of high-accuracy orbits is a prerequisite for the success of Low Earth Orbiter (LEO) missions such as CHAMP, GRACE and GOCE. The mission objectives of these satellites cannot be reached without computing orbits with an accuracy at the few cm level. Such a level of accuracy might be achieved with the techniques of reduced-dynamic and kinematic precise orbit determination (POD) assuming continuous Satellite-to-Satellite Tracking (SST) by the Global Positioning System (GPS). Both techniques have reached a high level of maturity and have been successfully applied to missions in the past, for example to TOPEX/POSEIDON (T/P), leading to (sub-)decimeter orbit accuracy. New LEO gravity missions are (to be) equipped with advanced GPS receivers promising to provide very high quality SST observations thereby opening the possibility for computing cm-level accuracy orbits. The computation of orbits at this accuracy level does not only require high-quality GPS receivers, but also advanced and demanding observation preprocessing and correction algorithms. Moreover, sophisticated parameter estimation schemes need to be adapted and extended to allow the computation of such orbits. Finally, reliable methods need to be employed for assessing the orbit quality and providing feedback to the different processing steps in the orbit computation process. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
83.
Severe low-altitude wind shear is a threat to aviation safety. Newly developed airborne sensors measure the radial component of wind along a line directly in front of an aircraft. The authors use optimal estimation theory to define a detection algorithm to warn of hazardous wind shear from these sensors. To achieve robustness, a wind shear detection algorithm must distinguish threatening wind shear from less hazardous gustiness, despite variations in wind shear structure. Statistical analysis methods to refine wind shear detection algorithm robustness are presented. Computational methods predict the ability to warn of severe wind shear and avoid false warning. Comparative capability of the detection algorithm as a function of its design parameters is determined, identifying designs that provide robust detection of severe wind shear  相似文献   
84.
Attitude estimation algorithms for the Thrusted Vector Mission which determine attitude based on Sun sensor and very coarse albedo sensor measurements are presented. On the basis of these measurements, it has been demonstrated by comparison with more accurate gyro-based attitude that it is possible to estimate three-axis attitude with an average error per axis of 11 deg. Most of this error is about the Sun direction. Both deterministic quick-look and optimal estimates are examined  相似文献   
85.
Two hybrid schemes of time-frequency resource sharing to increase the rain margin of Ku-and Ka-band satellite systems are proposed. Scheme 1 requires sharing a small pool of bandwidth for adaptive forward error control coding, sharing a small pool of time frame for rate reduction, and sharing a portion of low frequency time-division multiple access (TDMA) back-up frame for downlink transmission to the rain affected stations. Scheme 2 utilizes variable rate modulation and forward error correction, shares a small pool of time frame for rate reduction, and shares a portion of low frequency TDMA back-up frame. Effective usable capacities of the system using these schemes are calculated. Distribution of resources in order to maximize the effective usable capacity is also analyzed. The results obtained are compared with other adaptive schemes. Preliminary analysis shows that the utilized capacity of scheme 1 exceeds 99 percent of the effective usable capacity possible if it never rains for an outage of 0.05 percent and fade margin of 2.5 dB. For scheme 2 similar performance is achievable at a fade margin of 1.5 dB. For higher outage objectives the loss of effective utilized capacity is higher for scheme 2.  相似文献   
86.
The SOHO Solar EUV Monitor has been in operation since December 1995 onboard the SOHO spacecraft. This instrument is a highly stable transmission grating solar extreme ultraviolet spectrometer. It has made nearly continuous full disk solar irradiance measurements both within an 8 nm bandpass centered at 30.4 nm and throughout the 0.1 to 50 nm solar flux region since launch. The 30.4 nm flux, the 0.1 to 50 nm flux and the extracted soft X-ray (0.1 to 5 nm) flux are presented and compared with the behavior of solar proxies.  相似文献   
87.
The solar particle events (SPE) will contain a primary alpha particle component, representing a possible increase in the potential risk to astronauts during an SPE over the often studied proton component. We discuss the physical interactions of alpha particles important in describing the transport of these particles through spacecraft and body shielding. Models of light ion reactions are presented and their effects on energy and linear energy transfer (LET) spectra in shielding discussed. We present predictions of particle spectra, dose, and dose equivalent in organs of interest for SPE spectra typical of those occurring in recent solar cycles. The large events of solar cycle 19 are found to have substantial increase in biological risk from alpha particles, including a large increase in secondary neutron production from alpha particle breakup.  相似文献   
88.
89.
We consider a possibility to apply the method of analyzing the complex-shaped shells, proposed in [1], for determining the stress strain state of thin shells with a degenerating domain. The results of numerical calculations are presented.  相似文献   
90.
Large apertures are of great benefit to applications that are prime powered limited as is found on aerostat and other airborne platforms. Electronically scanned array antennas are often proposed for these applications. However, increasing the aperture area with conventional array technology is met with prohibitive cost, weight, and prime power increases because of the dense spacing of phase shifters and/or active T/R modules. This discusses the recent development of RF MEMS (Microelectromechanical System) switch technology and the use of these switches in a Radanttrade lens configuration for arrays of approximately 10 m2 at X-band. A proof-of-concept 0.4 m2 MEMS Electronically Steerable Antenna (ESA) containing 25,000 MEMS switches has been successfully designed, fabricated, and tested. The 0.4 m2 MEMS ESA was then integrated with an AN/APG-67 radar system to form the MEMS Demonstration Radar System. The MEMS Demonstration Radar System successfully detected both airborne and ground moving targets during a series of extensive radar demonstrations. This is believed to be the first large scale employment of MEMS switches in a scanning antenna and radar system. The low-cost, lightweight, and low power technology demonstrated can enable weight and power constrained platforms with electronic steering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号