首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   2篇
  国内免费   4篇
航空   58篇
航天技术   40篇
航天   35篇
  2021年   5篇
  2019年   6篇
  2018年   10篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   10篇
  2013年   19篇
  2012年   3篇
  2011年   8篇
  2010年   2篇
  2009年   7篇
  2008年   6篇
  2007年   6篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   4篇
  1978年   2篇
  1975年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有133条查询结果,搜索用时 47 毫秒
51.
This paper presents a mission analysis comparison of human missions to asteroids using two distinct architectures. The objective is to determine if either architecture can reduce launch mass with respect to the other, while not sacrificing other performance metrics such as mission duration. One architecture relies on chemical propulsion, the traditional workhorse of space exploration. The second combines chemical and electric propulsion into a hybrid architecture that attempts to utilize the strengths of each, namely the short flight times of chemical propulsion and the propellant efficiency of electric propulsion. The architectures are thoroughly detailed, and accessibility of the known asteroid population is determined for both. The most accessible asteroids are discussed in detail. Aspects such as mission abort scenarios and vehicle reusability are also discussed. Ultimately, it is determined that launch mass can be greatly reduced with the hybrid architecture, without a notable increase in mission duration. This demonstrates that significant performance improvements can be introduced to the next step of human space exploration with realistic electric propulsion system capabilities. This leads to immediate cost savings for human exploration and simultaneously opens a path of technology development that leads to technologies enabling access to even further destinations in the future.  相似文献   
52.
InSight Mars Lander Robotics Instrument Deployment System   总被引:1,自引:0,他引:1  
The InSight Mars Lander is equipped with an Instrument Deployment System (IDS) and science payload with accompanying auxiliary peripherals mounted on the Lander. The InSight science payload includes a seismometer (SEIS) and Wind and Thermal Shield (WTS), heat flow probe (Heat Flow and Physical Properties Package, HP3) and a precision tracking system (RISE) to measure the size and state of the core, mantle and crust of Mars. The InSight flight system is a close copy of the Mars Phoenix Lander and comprises a Lander, cruise stage, heatshield and backshell. The IDS comprises an Instrument Deployment Arm (IDA), scoop, five finger “claw” grapple, motor controller, arm-mounted Instrument Deployment Camera (IDC), lander-mounted Instrument Context Camera (ICC), and control software. IDS is responsible for the first precision robotic instrument placement and release of SEIS and HP3 on a planetary surface that will enable scientists to perform the first comprehensive surface-based geophysical investigation of Mars’ interior structure. This paper describes the design and operations of the Instrument Deployment Systems (IDS), a critical subsystem of the InSight Mars Lander necessary to achieve the primary scientific goals of the mission including robotic arm geology and physical properties (soil mechanics) investigations at the Landing site. In addition, we present test results of flight IDS Verification and Validation activities including thermal characterization and InSight 2017 Assembly, Test, and Launch Operations (ATLO), Deployment Scenario Test at Lockheed Martin, Denver, where all the flight payloads were successfully deployed with a balloon gravity offload fixture to compensate for Mars to Earth gravity.  相似文献   
53.
Metallic ions coming from the ablation of extraterrestrial dust, play a significant role in the distribution of ions in the Earth’s ionosphere. Ions of magnesium and iron, and to a lesser extent, sodium, aluminium, calcium and nickel, are a permanent feature of the lower E-region. The presence of interplanetary dust at long distances from the Sun has been confirmed by the measurements obtained by several spacecrafts. As on Earth, the flux of interplanetary meteoroids can affect the ionospheric structure of other planets. The electron density of many planets show multiple narrow layers below the main ionospheric peak which are similar, in magnitude, to the upper ones. These layers could be due to long-lived metallic ions supplied by interplanetary dust and/or their satellites. In the case of Mars, the presence of a non-permanent ionospheric layer at altitudes ranging from 65 to 110 km has been confirmed and the ion Mg+?CO2 identified. Here we present a review of the present status of observed low ionospheric layers in Venus, Mars, Jupiter, Saturn and Neptune together with meteoroid based models to explain the observations. Meteoroids could also affect the ionospheric structure of Titan, the largest Saturnian moon, and produce an ionospheric layer at around 700 km that could be investigated by Cassini.  相似文献   
54.
Galactic cosmic ray nuclei and energetic protons produced in solar flares and accelerated by coronal mass ejections are the main sources of high-energy particles of extraterrestrial origin in near-Earth space and inside the Earth’s atmosphere. The intensity of galactic cosmic rays inside the heliosphere is strongly influenced by the modulation of the interstellar source particles on their way through interplanetary space. Among others, this modulation depends on the activity of the Sun, and the resulting intensity of the energetic particles in the atmosphere is an indicator of the solar activity. Therefore, rare isotopes found in historical archives and produced by spallation reactions of primary and secondary hadrons of cosmic origin in the atmosphere, so-called cosmogenic nuclides, can be used to reconstruct the solar activity in the past. The production rate of 10Be, one of the cosmogenic nuclides most adequate to study the solar activity, is presented showing its variations with geographic latitude and altitude and the dependence on different production cross-sections present in literature. In addition, estimates for altitude integrated production rates of 10Be at different locations since the early nineteen sixties are shown.  相似文献   
55.
The imaging flash lidar has been considered as a promising sensor for the future space missions such as autonomous safe landing, spacecraft rendezvous and docking due to its ability to provide a full 3D scene with a single or multiple laser pulses. The linear-mode flash lidar has been developed and demonstrated for an autonomous safe landing on the Moon in order to provide an accurate distance measurement to the landing site and its 3D image. Yet, the Geiger-mode flash lidar has also been recognized as an emerging technology for the space missions because it is highly sensitive even to a single photon and provides the very accurate timing of photon arrival. In this study, the performance of the Geiger-mode flash lidar is simulated in the approach phase and evaluated for the autonomous landing on the Moon. Furthermore, a new statistical signal processing algorithm is proposed to remove the noise counts in order to obtain the 3D image from a sequence of laser pulses in the situation of the fast moving spacecraft. The algorithm is shown to be effective for the autonomous landing due to its ability to remove noise events under the condition of low signal-to-noise ratio and improve ranging accuracy.  相似文献   
56.
57.
Because of its proximity, our Sun provides a unique opportunity to perform high resolution observations of its outer layers throughout the whole electromagnetic spectrum. We can also theoretically model most of the fascinating physical phenomena taking place on the Sun, as well as their impact on the solar system.  相似文献   
58.
The Psychomotor Vigilance Test (PVT) objectively assesses fatigue-related changes in alertness associated with sleep loss, extended wakefulness, circadian misalignment, and time on task. The standard 10-min PVT is often considered impractical in applied contexts. To address this limitation, we developed a modified brief 3-min version of the PVT (PVT-B). The PVT-B was validated in controlled laboratory studies with 74 healthy subjects (34 female, aged 22-45 years) that participated either in a total sleep deprivation (TSD) study involving 33 hours awake (N=31 subjects) or in a partial sleep deprivation (PSD) protocol involving 5 consecutive nights of 4 hours time in bed (N=43 subjects). PVT and PVT-B were performed regularly during wakefulness. Effect sizes of 5 key PVT outcomes were larger for TSD than PSD and larger for PVT than for PVT-B for all outcomes. Effect size was largest for response speed (reciprocal response time) for both the PVT-B and the PVT in both TSD and PSD. According to Cohen's criteria, effect sizes for the PVT-B were still large (TSD) or medium to large (PSD, except for fastest 10% RT). Compared to the 70% decrease in test duration the 22.7% (range 6.9%-67.8%) average decrease in effect size was deemed an acceptable trade-off between duration and sensitivity. Overall, PVT-B performance had faster response times, more false starts and fewer lapses than PVT performance (all p<0.01). After reducing the lapse threshold from 500 ms to 355 ms for PVT-B, mixed model ANOVAs indicated no differential sensitivity to sleep loss between PVT-B and PVT for all outcome variables (all P>0.15) but the fastest 10% response times during PSD (P<0.001), and effect sizes increased from 1.38 to 1.49 (TSD) and 0.65 to 0.76 (PSD), respectively. In conclusion, PVT-B tracked standard 10-min PVT performance throughout both TSD and PSD, and yielded medium to large effect sizes. PVT-B may be a useful tool for assessing behavioral alertness in settings where the duration of the 10-min PVT is considered impractical, although further validation in applied settings is needed.  相似文献   
59.
As part of the “PolAres” research programme, we are investigating techniques to detect and reduce forward contamination of the Mars regolith during human exploration. We report here on the development of a spacesuit simulator-prototype dubbed “Aouda.X,” document the inability of current technology to produce a static charge sufficient to minimize dust transport on the suit, and present preliminary results employing laser induced fluorescence emission (L.I.F.E.) techniques to monitor fluorescent microspherules as biological contamination proxies.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号