排序方式: 共有34条查询结果,搜索用时 0 毫秒
31.
基于深度学习的航空发动机故障融合诊断 总被引:1,自引:3,他引:1
通过对航空发动机故障诊断,能够正确判断各部件工作状态,快速确定维修方案,保证飞行安全。在结合深度信念网络和决策融合算法的基础上,提出了基于深度学习的航空发动机故障融合诊断模型。该模型通过分析发动机的大量性能参数,先利用深度学习模型提取出性能参数中的隐藏特征,得出故障分类置信度;其后对多次故障分类结果进行决策融合,从而得出更准确的诊断结果。将普惠JT9D发动机故障系数用于数据仿真,通过算例验证本文算法的有效性;算例计算结果表明:多次实验结果经数据融合提高了可信度,该模型具有较高的故障分类诊断准确性和抗干扰能力。 相似文献
32.
基于不完备检测的飞机结构维修优化方法 总被引:1,自引:0,他引:1
针对飞机结构的损伤容限设计特点,提出了采用不等间隔的检测策略,同时考虑了不同检测等级的不同检测完备程度对飞机结构维修费用和维修决策的影响.研究了在此策略下的不同更新情况和相应的更新概率,以检测间隔、首检期系数和检测等级为优化变量,期望维修费用率为目标函数,建立了基于不完备检测的飞机结构维修优化模型.通过实例验证了模型的有效性和经济性. 相似文献
33.
滑油状态的监测与分析是航空发动机状态监测与故障诊断的重要手段。为了解决以往滑油金属质量分数预测模型算
法的局部性、收敛速度慢及预测结果误差大等问题,结合遗传算法(GA)收敛速度快、鲁棒性好等优点,对反向传播(BP)神经网络
算法进行GA优化,通过GA对参数寻优,并应用于发动机滑油金属质量分数预测。由于滑油的状态参数并不能确定部件故障与
否,利用贝叶斯(Bayes)决策规则对诊断结果进行了错误率计算。将所提方法应用于某航空发动机滑油铁质量分数预测,结果表
明:采用GA优化后的BP神经网络(GA-BP)得到的预测结果具有更高的精度,其最大预测误差不超过6%,平均预测误差为1.7%,
所测数据与原数据具有较好的拟合性,利用Bayes决策规则对诊断结果进行分析,对于部件故障与否的判别更具说服力。 相似文献
34.
针对航空发动机性能退化的形式及规律,提出一种基于降噪自编码器的航空发动机性能退化评估方法。针对采集的航空发动机6个状态监测参数,采用降噪自编码器,利用贪婪逐层训练算法,挖掘各参数对发动机性能的深层影响,提取出更有利于评估的数据特征,进行性能退化评估。将提出的算法与BP(back propagation)神经网络以及支持向量机得到的结果进行测试比较,测试表明:提出的方法准确率有所提高,达到93.5%,具有较强的鲁棒性,在信噪比为10dB时准确率达到84.5%,并且能够防止航空发动机状态监测中小样本过拟合的问题。 相似文献