首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   773篇
  免费   163篇
  国内免费   86篇
航空   609篇
航天技术   119篇
综合类   60篇
航天   234篇
  2024年   8篇
  2023年   10篇
  2022年   24篇
  2021年   32篇
  2020年   41篇
  2019年   27篇
  2018年   47篇
  2017年   41篇
  2016年   55篇
  2015年   50篇
  2014年   44篇
  2013年   62篇
  2012年   60篇
  2011年   44篇
  2010年   61篇
  2009年   44篇
  2008年   43篇
  2007年   38篇
  2006年   30篇
  2005年   24篇
  2004年   22篇
  2003年   24篇
  2002年   43篇
  2001年   27篇
  2000年   11篇
  1999年   23篇
  1998年   12篇
  1997年   13篇
  1996年   9篇
  1995年   10篇
  1994年   6篇
  1993年   10篇
  1992年   4篇
  1991年   5篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
排序方式: 共有1022条查询结果,搜索用时 34 毫秒
21.
The science payload on the Deep Impact mission includes a 1.05–4.8 μm infrared spectrometer with a spectral resolution ranging from R∼200–900. The Deep Impact IR spectrometer was designed to optimize, within engineering and cost constraints, observations of the dust, gas, and nucleus of 9P/Tempel 1. The wavelength range includes absorption and emission features from ices, silicates, organics, and many gases that are known to be, or anticipated to be, present on comets. The expected data will provide measurements at previously unseen spatial resolution before, during, and after our cratering experiment at the comet 9P/Tempel 1. This article explores the unique aspects of the Deep Impact IR spectrometer experiment, presents a range of expectations for spectral data of 9P/Tempel 1, and summarizes the specific science objectives at each phase of the mission.  相似文献   
22.
In 1998, Comet 9P/Tempel 1 was chosen as the target of the Deep Impact mission (A’Hearn, M. F., Belton, M. J. S., and Delamere, A., Space Sci. Rev., 2005) even though very little was known about its physical properties. Efforts were immediately begun to improve this situation by the Deep Impact Science Team leading to the founding of a worldwide observing campaign (Meech et al., Space Sci. Rev., 2005a). This campaign has already produced a great deal of information on the global properties of the comet’s nucleus (summarized in Table I) that is vital to the planning and the assessment of the chances of success at the impact and encounter. Since the mission was begun the successful encounters of the Deep Space 1 spacecraft at Comet 19P/Borrelly and the Stardust spacecraft at Comet 81P/Wild 2 have occurred yielding new information on the state of the nuclei of these two comets. This information, together with earlier results on the nucleus of comet 1P/Halley from the European Space Agency’s Giotto, the Soviet Vega mission, and various ground-based observational and theoretical studies, is used as a basis for conjectures on the morphological, geological, mechanical, and compositional properties of the surface and subsurface that Deep Impact may find at 9P/Tempel 1. We adopt the following working values (circa December 2004) for the nucleus parameters of prime importance to Deep Impact as follows: mean effective radius = 3.25± 0.2 km, shape – irregular triaxial ellipsoid with a/b = 3.2± 0.4 and overall dimensions of ∼14.4 × 4.4 × 4.4 km, principal axis rotation with period = 41.85± 0.1 hr, pole directions (RA, Dec, J2000) = 46± 10, 73± 10 deg (Pole 1) or 287± 14, 16.5± 10 deg (Pole 2) (the two poles are photometrically, but not geometrically, equivalent), Kron-Cousins (V-R) color = 0.56± 0.02, V-band geometric albedo = 0.04± 0.01, R-band geometric albedo = 0.05± 0.01, R-band H(1,1,0) = 14.441± 0.067, and mass ∼7×1013 kg assuming a bulk density of 500 kg m−3. As these are working values, {i.e.}, based on preliminary analyses, it is expected that adjustments to their values may be made before encounter as improved estimates become available through further analysis of the large database being made available by the Deep Impact observing campaign. Given the parameters listed above the impact will occur in an environment where the local gravity is estimated at 0.027–0.04 cm s−2 and the escape velocity between 1.4 and 2 m s−1. For both of the rotation poles found here, the Deep Impact spacecraft on approach to encounter will find the rotation axis close to the plane of the sky (aspect angles 82.2 and 69.7 deg. for pole 1 and 2, respectively). However, until the rotation period estimate is substantially improved, it will remain uncertain whether the impactor will collide with the broadside or the ends of the nucleus.  相似文献   
23.
The Deep Impact mission will provide the highest resolution images yet of a comet nucleus. Our knowledge of the makeup and structure of cometary nuclei, and the processes shaping their surfaces, is extremely limited, thus use of the Deep Impact data to show the geological context of the cratering experiment is crucial. This article briefly discusses some of the geological issues of cometary nuclei.  相似文献   
24.
针对变速机动目标的变速导弹三维导引律   总被引:6,自引:1,他引:6  
应用李雅普诺夫稳定理论,提出一种三维制导算法,在算法设计中,既考虑了目标机动,包括目标速度的变化,又考虑了导弹速度的变化,为实现所提出的算法,进一步将与目标运动的加速度和速度方位信息的有关的项归为两项,给出了其估计方法,仿真结果验证了该方法的有效性。  相似文献   
25.
论述了积分型H∞鲁棒伺服控制器的设计,并对这种鲁棒伺服控制器在飞行包线的多个工作点的工作进行了仿真模拟.结果表明,该控制器能够满足鲁棒伺服跟踪控制的要求.  相似文献   
26.
点火能量等因素对脉冲爆震室压的影响实验   总被引:2,自引:2,他引:2       下载免费PDF全文
以汽油/空气两相混气为可爆混合物,采用汽油机点火和半导体高能点火系统,实验研究了不同点火频率对脉冲爆震室中不同位置脉冲爆震波压力的影响,结果发现,充满度大,产生的紊流强度大,有利于爆震波的形成;在大多数情况下,用低能量(50mJ)的点火系统点火时,点火频率大于实际产生的爆震频率;用高能(IJ)点火系统时,可缩短烯向爆震转变(DDT)的距离,易产生爆震,所得爆震波的峰值压力明显增大,所得结果可为脉冲爆震发动机的设计、爆震点火系统选型提供重要参考。  相似文献   
27.
将结构参数不确定性问题引入到参数化的一般 H∞ 控制器中 ,并考虑 H2 性能指标 ,提出了 1种被控系统中存在结构参数不确定性的混合 H∞ /H2 控制器的设计方法 ,给出了相应问题求解的充分必要条件 ,问题的解归结为求解 3个 Riccati方程。设计的控制器在某型双转子涡喷发动机气动热力学非线性模型上进行了仿真验证  相似文献   
28.
对国内、外螺旋桨翼型研制和发展的情况作了简单回顾后对分别采用NPUPR翼型及NACA-16翼型设计的四种螺旋桨方案的气动设计方法作了简单说明,同时介绍了用这些方案进行风洞实验研究的主要结果,这些结果与计算结果相一致。此外,计算和实验结果表明:NPUPR翼型设计的螺旋桨明显优于用NACA-16翼型设计的2方案,而用NPUPR原翼型的K、Z方案又明显优于应用户要求修型的1方案。  相似文献   
29.
本文对海洋平台在风、浪及海流等多种载荷组合作用下的可靠性进行了分析计算,采用优选随机载单元法进行结构数的随机域离散。文中的海洋平台算例结构表明了优选随机域单元法的高效性,以及在海洋工程的结构系统可靠性计算中的考虑载荷组合作用的必要性。  相似文献   
30.
通过二次回归通用旋转组合设计了铝合金7075微弧氧化实验,建立了回归模型,量化了对陶瓷膜的多变量互约组合的影响趋势,解决了对生长陶瓷膜可预测、可控制的工艺。通过工艺特性曲线、金相分析、X射线衍射、扫描断层分析、摩擦磨损实验等手段,对形成的陶瓷膜特性进行了分析。结果表明:采用回归设计铝合金7075微弧氧化工艺是可行有效的,可在很大范围内调节陶瓷膜的微观和宏观结构,调节陶瓷膜相的比例关系,获得防腐、耐磨、电绝缘等高品质陶瓷膜。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号