首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   0篇
航空   174篇
航天技术   18篇
航天   28篇
  2018年   66篇
  2017年   37篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   14篇
  2010年   9篇
  2009年   6篇
  2008年   7篇
  2007年   9篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   5篇
  2000年   2篇
  1999年   6篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   11篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1985年   3篇
  1981年   2篇
  1980年   1篇
排序方式: 共有220条查询结果,搜索用时 31 毫秒
111.
In order to determine possible adaptation strategies of vertebrates to extreme low-temperature environments, we compared the concentration and composition of gangliosides from the brains of eight species of Antarctic Notothenioid “ice” fishes with those of warm-adapted species and those of fishes from habitats of moderate temperature. The concentration of whole-brain gangliosides in the ice fishes was comparable with that in moderate-temperature species (between 3.36 and 4.31 mg NeuAc/g protein). The composition of brain gangliosides differed, however. In particular, the relative concentrations of polysialogangliosides (= polarity) and alkali-labile gangliosides was higher in all Antarctic species investigated than in warm-adapted fish species. This difference is considered a suitable mechanism for keeping neuronal membranes functional even below the freezing point. This interpretation is supported by additional physicochemical results with artificial monolayer membranes, which give evidence for a high thermosensitivity of ganglioside complexes in connection with calcium.  相似文献   
112.
Seven different models are applied to the same problem of simulating the Sun’s coronal magnetic field during the solar eclipse on 2015 March 20. All of the models are non-potential, allowing for free magnetic energy, but the associated electric currents are developed in significantly different ways. This is not a direct comparison of the coronal modelling techniques, in that the different models also use different photospheric boundary conditions, reflecting the range of approaches currently used in the community. Despite the significant differences, the results show broad agreement in the overall magnetic topology. Among those models with significant volume currents in much of the corona, there is general agreement that the ratio of total to potential magnetic energy should be approximately 1.4. However, there are significant differences in the electric current distributions; while static extrapolations are best able to reproduce active regions, they are unable to recover sheared magnetic fields in filament channels using currently available vector magnetogram data. By contrast, time-evolving simulations can recover the filament channel fields at the expense of not matching the observed vector magnetic fields within active regions. We suggest that, at present, the best approach may be a hybrid model using static extrapolations but with additional energization informed by simplified evolution models. This is demonstrated by one of the models.  相似文献   
113.
114.
We give an overview of recent efforts to model Type Ia supernovae and related astrophysical transients resulting from thermonuclear explosions in white dwarfs. In particular we point out the challenges resulting from the multi-physics multi-scale nature of the problem and discuss possible numerical approaches to meet them in hydrodynamical explosion simulations and radiative transfer modeling. We give examples of how these methods are applied to several explosion scenarios that have been proposed to explain distinct subsets or, in some cases, the majority of the observed events. In case we comment on some of the successes and shortcoming of these scenarios and highlight important outstanding issues.  相似文献   
115.
We review the major advances in understanding the morphologies and kinematics of supernova remnants (SNRs). Simulations of SN explosions have improved dramatically over the last few years, and SNRs can be used to test models through comparison of predictions with SNRs’ observed large-scale compositional and morphological properties as well as the three-dimensional kinematics of ejecta material. In particular, Cassiopeia A—the youngest known core-collapse SNR in the Milky Way—offers an up-close view of the complexity of these explosive events that cannot be resolved in distant, extragalactic sources. We summarize the progress in tying SNRs to their progenitors’ explosions through imaging and spectroscopic observations, and we discuss exciting future prospects for SNR studies, such as X-ray microcalorimeters.  相似文献   
116.
Planets form in circumstellar discs around young stars. Starting with sub-micron sized dust particles, giant planet formation is all about growing 14 orders of magnitude in size. It has become increasingly clear over the past decades that during all stages of giant planet formation, the building blocks are extremely mobile and can change their semimajor axis by substantial amounts. In this chapter, we aim to give a basic overview of the physical processes thought to govern giant planet formation and migration, and to highlight possible links to water delivery.  相似文献   
117.
Partially ionized plasmas are found across the Universe in many different astrophysical environments. They constitute an essential ingredient of the solar atmosphere, molecular clouds, planetary ionospheres and protoplanetary disks, among other environments, and display a richness of physical effects which are not present in fully ionized plasmas. This review provides an overview of the physics of partially ionized plasmas, including recent advances in different astrophysical areas in which partial ionization plays a fundamental role. We outline outstanding observational and theoretical questions and discuss possible directions for future progress.  相似文献   
118.
The processes of planet formation in our Solar System resulted in a final product of a small number of discreet planets and planetesimals characterized by clear compositional distinctions. A key advance on this subject was provided when nucleosynthetic isotopic variability was discovered between different meteorite groups and the terrestrial planets. This information has now been coupled with theoretical models of planetesimal growth and giant planet migration to better understand the nature of the materials accumulated into the terrestrial planets. First order conclusions include that carbonaceous chondrites appear to contribute a much smaller mass fraction to the terrestrial planets than previously suspected, that gas-driven giant planet migration could have pushed volatile-rich material into the inner Solar System, and that planetesimal formation was occurring on a sufficiently rapid time scale that global melting of asteroid-sized objects was instigated by radioactive decay of 26Al. The isotopic evidence highlights the important role of enstatite chondrites, or something with their mix of nucleosynthetic components, as feedstock for the terrestrial planets. A common degree of depletion of moderately volatile elements in the terrestrial planets points to a mechanism that can effectively separate volatile and refractory elements over a spatial scale the size of the whole inner Solar System. The large variability in iron to silicon ratios between both different meteorite groups and between the terrestrial planets suggests that mechanisms that can segregate iron metal from silicate should be given greater importance in future investigations. Such processes likely include both density separation of small grains in the nebula, but also preferential impact erosion of either the mantle or core from differentiated planets/planetesimals. The latter highlights the important role for giant impacts and collisional erosion during the late stages of planet formation.  相似文献   
119.
Good progress has been made in the past few years to better understand the XUV evolution trend of Sun-like stars, the capture and dissipation of hydrogen dominant envelopes of planetary embryos and protoplanets, and water loss from young planets around M dwarfs. This chapter reviews these recent developments. Observations of exoplanets and theoretical works in the near future will significantly advance our understanding of one of the fundamental physical processes shaping the evolution of solar system terrestrial planets.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号