首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   0篇
航空   47篇
航天技术   14篇
航天   23篇
  2021年   1篇
  2017年   1篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   5篇
  2010年   5篇
  2009年   6篇
  2008年   4篇
  2007年   6篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   5篇
  2002年   4篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   3篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1978年   1篇
  1976年   1篇
  1968年   2篇
  1966年   2篇
排序方式: 共有84条查询结果,搜索用时 46 毫秒
31.
Curiosity’s Mars Hand Lens Imager (MAHLI) Investigation   总被引:1,自引:0,他引:1  
The Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) investigation will use a 2-megapixel color camera with a focusable macro lens aboard the rover, Curiosity, to investigate the stratigraphy and grain-scale texture, structure, mineralogy, and morphology of geologic materials in northwestern Gale crater. Of particular interest is the stratigraphic record of a ~5?km thick layered rock sequence exposed on the slopes of Aeolis Mons (also known as Mount Sharp). The instrument consists of three parts, a?camera head mounted on the turret at the end of a robotic arm, an electronics and data storage assembly located inside the rover body, and a calibration target mounted on the robotic arm shoulder azimuth actuator housing. MAHLI can acquire in-focus images at working distances from ~2.1?cm to infinity. At the minimum working distance, image pixel scale is ~14?μm per pixel and very coarse silt grains can be resolved. At the working distance of the Mars Exploration Rover Microscopic Imager cameras aboard Spirit and Opportunity, MAHLI’s resolution is comparable at ~30?μm per pixel. Onboard capabilities include autofocus, auto-exposure, sub-framing, video imaging, Bayer pattern color interpolation, lossy and lossless compression, focus merging of up to 8 focus stack images, white light and longwave ultraviolet (365 nm) illumination of nearby subjects, and 8 gigabytes of non-volatile memory data storage.  相似文献   
32.
In 2000 there were 40 different countries that had registered space agencies. By 2009 that number had continued to grow to 55. This article discusses how cooperation allows a nation to leverage resource and reduce risk; improve global engagement; and enhance diplomatic prestige of engaged states, political sustainability and workforce stability. The obstacles and impediments to cooperation are substantial, and are manifested through various anti-collaborative behaviors. To achieve success, these obstacles and impediments must be understood and confronted. The article examines the substantial challenges posed by technology transfer constraints, international and domestic politics, and exceptionalism perspectives. Given the imperative to cooperate, four frameworks (cooperation, augmentation, interdependence, and integration) can be employed to overcome these challenges and achieve success.  相似文献   
33.
The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter’s far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno’s other remote sensing instruments and used to place in situ measurements made by Juno’s particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter’s magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS.  相似文献   
34.
Electron transparent thin sections (30–100 nm thick) of interplanetary dust particles and other fine-grained meteoritic materials are produced using an ultramicrotome equipped with a diamond knife. An analytical electron microscope (AEM) is imployed to examine indigenous physical properties (e.g. porosity), mineralogy, and petrography. Large data sets of quantitative point count analyses obtained from thin sections enable direct mineralogical comparison of IDPs and Halley.  相似文献   
35.
The concept of a reusable space transporter formed a focus of much effort for the German firms Junkers Flugzeug- und Motorenwerke (JFM), Messerschmitt-Bölkow-Blohm und Voss (MBB) and Entwicklungsring Nord (ERNO), together with the Deutsche Forschungs- und Veruchsanstalt für Luft- und Raumfahrt (DFVLR) and different University institutes during the decade beginning 1962. The result was the definition, in 1972, of a program of the “Arbeitsgruppe Rückkehrtechnologie” (ART, Working group for reentry technology) which integrated all relevant capacities of research establishments, industry, and universities. The aim was the maintenance of the technical-scientific capabilities for advanced high velocity flight systems and to qualify for international cooperation in this field. Only a small part of this work could be completed, as the ART-program was never accepted by the German Ministry for Research and Technology. So the current work was stopped by the end of 1975. Nevertheless, as the ART-program can serve as a guide-line for possible future work a summary of this work is given.  相似文献   
36.
Blanc  M.  Bolton  S.  Bradley  J.  Burton  M.  Cravens  T.E.  Dandouras  I.  Dougherty  M.K.  Festou  M.C.  Feynman  J.  Johnson  R.E.  Gombosi  T.G.  Kurth  W.S.  Liewer  P.C.  Mauk  B.H.  Maurice  S.  Mitchell  D.  Neubauer  F.M.  Richardson  J.D.  Shemansky  D.E.  Sittler  E.C.  Tsurutani  B.T.  Zarka  Ph.  Esposito  L.W.  Grün  E.  Gurnett  D.A.  Kliore  A.J.  Krimigis  S.M.  Southwood  D.  Waite  J.H.  Young  D.T. 《Space Science Reviews》2002,104(1-4):253-346
Magnetospheric and plasma science studies at Saturn offer a unique opportunity to explore in-depth two types of magnetospheres. These are an ‘induced’ magnetosphere generated by the interaction of Titan with the surrounding plasma flow and Saturn's ‘intrinsic’ magnetosphere, the magnetic cavity Saturn's planetary magnetic field creates inside the solar wind flow. These two objects will be explored using the most advanced and diverse package of instruments for the analysis of plasmas, energetic particles and fields ever flown to a planet. These instruments will make it possible to address and solve a series of key scientific questions concerning the interaction of these two magnetospheres with their environment. The flow of magnetospheric plasma around the obstacle, caused by Titan's atmosphere/ionosphere, produces an elongated cavity and wake, which we call an ‘induced magnetosphere’. The Mach number characteristics of this interaction make it unique in the solar system. We first describe Titan's ionosphere, which is the obstacle to the external plasma flow. We then study Titan's induced magnetosphere, its structure, dynamics and variability, and discuss the possible existence of a small intrinsic magnetic field of Titan. Saturn's magnetosphere, which is dynamically and chemically coupled to all other components of Saturn's environment in addition to Titan, is then described. We start with a summary of the morphology of magnetospheric plasma and fields. Then we discuss what we know of the magnetospheric interactions in each region. Beginning with the innermost regions and moving outwards, we first describe the region of the main rings and their connection to the low-latitude ionosphere. Next the icy satellites, which develop specific magnetospheric interactions, are imbedded in a relatively dense neutral gas cloud which also overlaps the spatial extent of the diffuse E ring. This region constitutes a very interesting case of direct and mutual coupling between dust, neutral gas and plasma populations. Beyond about twelve Saturn radii is the outer magnetosphere, where the dynamics is dominated by its coupling with the solar wind and a large hydrogen torus. It is a region of intense coupling between the magnetosphere and Saturn's upper atmosphere, and the source of Saturn's auroral emissions, including the kilometric radiation. For each of these regions we identify the key scientific questions and propose an investigation strategy to address them. Finally, we show how the unique characteristics of the CASSINI spacecraft, instruments and mission profile make it possible to address, and hopefully solve, many of these questions. While the CASSINI orbital tour gives access to most, if not all, of the regions that need to be explored, the unique capabilities of the MAPS instrument suite make it possible to define an efficient strategy in which in situ measurements and remote sensing observations complement each other. Saturn's magnetosphere will be extensively studied from the microphysical to the global scale over the four years of the mission. All phases present in this unique environment — extended solid surfaces, dust and gas clouds, plasma and energetic particles — are coupled in an intricate way, very much as they are in planetary formation environments. This is one of the most interesting aspects of Magnetospheric and Plasma Science studies at Saturn. It provides us with a unique opportunity to conduct an in situ investigation of a dynamical system that is in some ways analogous to the dusty plasma environments in which planetary systems form. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
37.
Propulsion system characteristics determine to a large extent the dynamic behavior of a spacecraft. For many future science missions technologically novel micro-propulsion systems are required. In order to support its characterization, in-orbit experiments and subsequent data processing on ground can be an appropriate add-on to ground-based laboratory measurements. In this paper two identification methods for three major thruster parameters, thrust gain, thrust direction, and lever arm, are presented and compared. They are based on measurements of a precise inertial instrument that consists of two test masses, whose degrees of freedom are “mixed” with respect to its control principle, i.e. they are either drag-free controlled (free-flying) or suspension controlled (accelerometer mode). Using drag-free coordinates is a novel approach. It is related and compared to the more conventional approach using “accelerometer-like” measurements.  相似文献   
38.
Uncertainty on carbon fluxes is determined by the uncertainties of ecosystem model structure, data and model parameter uncertainties and the temporal and spatial inaccuracy of the input data retrieval. The objective of this paper is to understand the error propagation and uncertainty of evaporative fraction (EF), soil moisture content (SMC) and water limited net ecosystem productivity (NEP). In this respect, C-Fix and spaceborne remote sensing are used for the ‘Brasschaat’ pixel. A simple model based on error theory and a Monte-Carlo approach are used. Different error scenarios are implemented to assess input uncertainty on EF, SMC and NEP as estimated with C-Fix.  相似文献   
39.
The Rosetta spacecraft has been successfully launched on 2nd March 2004 to its new target comet 67 P/Churyumov-Gerasimenko. The science objectives of the Rosetta Radio Science Investigations (RSI) experiment address fundamental aspects of cometary physics such as the mass and bulk density of the nucleus, its gravity field, its interplanetary orbit perturbed by nongravitational forces, its size and shape, its internal structure, the composition and roughness of the nucleus surface, the abundance of large dust grains, the plasma content in the coma and the combined dust and gas mass flux. The masses of two asteroids, Steins and Lutetia, shall be determined during flybys in 2008 and 2010, respectively. Secondary objectives are the radio sounding of the solar corona during the superior conjunctions of the spacecraft with the Sun during the cruise phase. The radio carrier links of the spacecraft Telemetry, Tracking and Command (TT&C) subsystem between the orbiter and the Earth will be used for these investigations. An Ultrastable oscillator (USO) connected to both transponders of the radio subsystem serves as a stable frequency reference source for both radio downlinks at X-band (8.4 GHz) and S-band (2.3 GHz) in the one-way mode. The simultaneous and coherent dual-frequency downlinks via the High Gain Antenna (HGA) permit separation of contributions from the classical Doppler shift and the dispersive media effects caused by the motion of the spacecraft with respect to the Earth and the propagation of the signals through the dispersive media, respectively. The investigation relies on the observation of the phase, amplitude, polarization and propagation times of radio signals transmitted from the spacecraft and received with ground station antennas on Earth. The radio signals are affected by the medium through which the signals propagate (atmospheres, ionospheres, interplanetary medium, solar corona), by the gravitational influence of the planet on the spacecraft and finally by the performance of the various systems involved both on the spacecraft and on ground.  相似文献   
40.
The enormous benefits of a worldwide accurate location system can only be achieved if GPS and Galileo can be made truly interoperable. The technical issues involved are relatively easy to deal with but the political and legal problems require far greater attention, with military issues and enactment of legislation the chief difficulties. These are discussed using examples, notably from road traffic law. Given that the US DoD is unlikely to cede control of GPS to the civil sector and design a new, separate system, the best solution might be to set aside part of GPS for purely civil purposes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号