首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   1篇
  国内免费   1篇
航空   74篇
航天技术   24篇
航天   11篇
  2021年   2篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   4篇
  2009年   6篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   6篇
  1995年   1篇
  1994年   5篇
  1993年   8篇
  1992年   1篇
  1990年   2篇
  1989年   4篇
  1988年   4篇
  1985年   4篇
  1984年   4篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1969年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有109条查询结果,搜索用时 687 毫秒
51.
Space Science Reviews - This paper reviews habitability conditions for a terrestrial planet from the point of view of geosciences. It addresses how interactions between the interior of a planet or...  相似文献   
52.
Lacking plate tectonics and crustal recycling, the long-term evolution of the crust-mantle system of Mars is driven by mantle convection, partial melting, and silicate differentiation. Volcanic landforms such as lava flows, shield volcanoes, volcanic cones, pyroclastic deposits, and dikes are observed on the martian surface, and while activity was widespread during the late Noachian and Hesperian, volcanism became more and more restricted to the Tharsis and Elysium provinces in the Amazonian period. Martian igneous rocks are predominantly basaltic in composition, and remote sensing data, in-situ data, and analysis of the SNC meteorites indicate that magma source regions were located at depths between 80 and 150 km, with degrees of partial melting ranging from 5 to 15 %. Furthermore, magma storage at depth appears to be of limited importance, and secular cooling rates of 30 to 40 K?Gyr?1 were derived from surface chemistry for the Hesperian and Amazonian periods. These estimates are in general agreement with numerical models of the thermo-chemical evolution of Mars, which predict source region depths of 100 to 200 km, degrees of partial melting between 5 and 20 %, and secular cooling rates of 40 to 50 K?Gyr?1. In addition, these model predictions largely agree with elastic lithosphere thickness estimates derived from gravity and topography data. Major unknowns related to the evolution of the crust-mantle system are the age of the shergottites, the planet’s initial bulk mantle water content, and its average crustal thickness. Analysis of the SNC meteorites, estimates of the elastic lithosphere thickness, as well as the fact that tidal dissipation takes place in the martian mantle indicate that rheologically significant amounts of water of a few tens of ppm are still present in the interior. However, the exact amount is controversial and estimates range from only a few to more than 200 ppm. Owing to the uncertain formation age of the shergottites it is unclear whether these water contents correspond to the ancient or present mantle. It therefore remains to be investigated whether petrologically significant amounts of water of more than 100 ppm are or have been present in the deep interior. Although models suggest that about 50 % of the incompatible species (H2O, K, Th, U) have been removed from the mantle, the amount of mantle differentiation remains uncertain because the average crustal thickness is merely constrained to within a factor of two.  相似文献   
53.
Uncertainty on carbon fluxes is determined by the uncertainties of ecosystem model structure, data and model parameter uncertainties and the temporal and spatial inaccuracy of the input data retrieval. The objective of this paper is to understand the error propagation and uncertainty of evaporative fraction (EF), soil moisture content (SMC) and water limited net ecosystem productivity (NEP). In this respect, C-Fix and spaceborne remote sensing are used for the ‘Brasschaat’ pixel. A simple model based on error theory and a Monte-Carlo approach are used. Different error scenarios are implemented to assess input uncertainty on EF, SMC and NEP as estimated with C-Fix.  相似文献   
54.
55.
Ground-multi path mitigation via polarization steering of GPS signal   总被引:1,自引:0,他引:1  
Multipath (MP) is the dominant error source in Global Positioning System (GPS) code-based position solutions requiring high accuracy. A technique is introduced here to mitigate error due to ground-reflected MP signals. The technique uses two orthogonal dipoles to capture the direct GPS signal and the ground-reflected GPS signal. Adjusting the amplitude and phase of the received voltage between the two dipoles can reduce the impact of MP error. Theoretical derivations of this technique are performed for a GPS signal upon reflection from dry soil, seawater, and fresh water. The theoretical results are verified with a real world experiment on the aforementioned surfaces. GPS pseudo-range (PR) and carrier-to-noise ratio (C/No) measurements for specific satellites are used to verify the predicted theoretical results.  相似文献   
56.
This paper describes experimental results from a development program focused on maturing Titan aerobot technology in the areas of mechanical and thermal subsystems. Results from four key activities are described: first, a cryogenic balloon materials development program involving coupon and cylinder tests and culminating in the fabrication and testing of an inflated 4.6 m long prototype blimp at 93 K; second, a combined lab experiment and numerical simulation effort to assess potential problems resulting from radioisotope power source waste heat generation near an inflated blimp; third, an aerial deployment and inflation development program consisting of laboratory and helicopter drop tests on a near full scale (11 m long) prototype blimp; and fourth, a proof of concept experiment demonstrating the viability of using a mechanically steerable high gain antenna on a floating blimp to perform direct to Earth telecommunications from Titan. The paper provides details on all of these successful activities and discusses their impact on the overall effort to produce mature systems technology for future Titan aerobot missions.  相似文献   
57.
Simulations of coronal mass ejections (CMEs) evolving in the interplanetary (IP) space from the Sun up to 1 AU are performed in the framework of ideal magnetohydrodynamics (MHD) by the means of a finite-volume, explicit solver. The aim is to quantify the effect of the background solar wind and of the CME initiation parameters, such as the initial magnetic polarity, on the evolution and on the geo-effectiveness of CMEs. First, three different solar wind models are reconstructed using the same numerical grid and the same numerical scheme. Then, different CME initiation models are considered: Magnetic foot point shearing and magnetic flux emergence. For the fast CME evolution studies, a very simple CME model is considered: A high-density and high-pressure magnetized plasma blob is superposed on a background steady state solar wind model with an initial velocity and launch direction. The simulations show that the initial magnetic polarity substantially affects the IP evolution of the CMEs influencing the propagation velocity, the shape, the trajectory (and thus, the geo-effectiveness).  相似文献   
58.
59.
60.
In light of assessing the habitability of Mars, we examine the impact of the magnetic field on the atmosphere. When there is a magnetic field, the atmosphere is protected from erosion by solar wind. The magnetic field ensures the maintenance of a dense atmosphere, necessary for liquid water to exist on the surface of Mars. We also examine the impact of the rotation of Mars on the magnetic field. When the magnetic field of Mars ceased to exist (about 4 Gyr ago), atmospheric escape induced by solar wind began. We consider scenarios which could ultimately lead to a decrease of atmospheric pressure to the presently observed value of 7 mbar: a much weaker early martian magnetic field, a late onset of the dynamo, and high erosion rates of a denser early atmosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号