首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   7篇
  国内免费   8篇
航空   69篇
航天技术   69篇
综合类   4篇
航天   34篇
  2021年   5篇
  2019年   5篇
  2018年   4篇
  2017年   2篇
  2016年   5篇
  2014年   15篇
  2013年   9篇
  2012年   8篇
  2011年   18篇
  2010年   6篇
  2009年   13篇
  2008年   19篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   5篇
  2002年   4篇
  2001年   7篇
  2000年   4篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1973年   1篇
排序方式: 共有176条查询结果,搜索用时 15 毫秒
71.
One outstanding question to be addressed in assessing the risk of exposure to space travelers from galactic cosmic rays (GCR) outside the geomagnetosphere is to ascertain the effects of single heavy-ion hits on cells in critical regions of the central nervous system (CNS). As a first step toward this end, it is important to determine how many "hits" might be received by a neural cell in several critical CNS areas during an extended mission outside the confines of the earth's magnetic field. Critical sites in the CNS: the macula, and an interior brain point (typical of the genu, thalamus, hippocampus and nucleus basalis of Meynert) were chosen for the calculation of hit frequencies from galactic cosmic rays for a mission to Mars during solar minimum (i.e., at maximum cosmic-ray intensity). The shielding at a given position inside the body was obtained using the Computerized Anatomical Man (CAM) model, and a radiation transport code which includes nuclear fragmentation was used to calculate yearly fluences at the point of interest. Since the final Mars spacecraft shielding configuration has not yet been determined, we considered the minimum amount of aluminum required for pressure vessel-wall requirements in the living quarters of a spacecraft, and a typical duty area as a pressure vessel plus necessary equipment. The conclusions are: (1) variation of the position of the "target site" within the head plays only a small role in varying hit frequencies; (2) the average number of hits depends linearly on the cross section of the critical portion of the cell assumed in the calculation; (3) for a three-year mission to Mars at solar minimum (i.e., assuming the 1977 spectrum of galactic cosmic rays), 2% or 13% of the "critical sites" of cells in the CNS would be directly hit at least once by iron ions, depending on whether 60 micrometers2 or 471 micrometers2 is assumed as the critical cross sectional area; and (4) roughly 6 million out of some 43 million hippocampal cells and 55 thousand out of 1.8 million thalamus cell nuclei would be directly hit by iron ions at least once on such a mission for space travelers inside a simple pressure vessel. Also, roughly 20 million out of 43 million hippocampal cells and 230 thousand out of 1.8 million thalamus cell nuclei would be directly hit by one or more particles with z > or = 15 on such a mission.  相似文献   
72.
螺旋桨气流斜吹对飞行影响的分析   总被引:1,自引:1,他引:1  
桑雨生 《飞行力学》1997,15(4):68-72
简要论述了螺旋桨气流斜吹的理论,重点分析了螺旋桨气流斜吹对飞行的影响。最后结论飞行实例,进一步分析了螺旋桨气流斜吹给飞行带来的偏差。结果表明,飞机在大迎角或大侧滑角下飞行时,螺旋桨气流斜吹使同产生了附加的拉力力矩和侧力力矩,对飞机俯仰和方向平衡有明显影响,给飞行员的操纵带来不利影响。所以,在分析螺旋桨副作用对飞行的影响时,必须考虑螺旋桨气流斜吹的作用。  相似文献   
73.
A ground-based electro-optical (EO) array, deployed at the Jilin Space Tracking Base of Changchun Observatory, China, has been in operation since April 2017. The array has 8 small telescopes, each has an aperture of 15 cm and a field of view of 14° × 14°. On average, the array can collect angles data over 3–4 thousand Very Short Arcs (VSAs) of Low Earth Orbit (LEO) space objects each night. Correlation of the VSA angles data with the NORAD catalogue objects results in about 85% of all the VSAs being correlated to NORAD objects. The remaining 15% VSAs angles data could be supposed from uncatalogued objects. The Initial Orbit Determination (IOD) solutions of the VSAs with the range-search method and the association results of the IODs with the geometrical method are presented. The mean IOD success rate is about 91% and the True Positive (TP) rate is more than 86%. In addition, the classical Gauss, Laplace, Gooding and Double-r angles-only IOD methods are applied to process VSA angles data and their performance is assessed. The CBTA method is used to associate the IOD tracks and compared with the geometrical method. A set of procedures for identifying the uncatalogued objects based on the VSA angles data is designed. Processing of the VSA angles data from Aug 4 to Sep 30, 2017 reveals there are possibly 415 uncatalogued LEO objects.  相似文献   
74.
In the upcoming generation of satellite sensors, hyperspectral instruments will play a significant role. This payload type is considered world-wide within different future planning.Our team has now successfully finalized the Phase B study for the advanced hyperspectral mission EnMAP (Environmental Mapping and Analysis Programme), Germans next optical satellite being scheduled for launch in 2012. GFZ in Potsdam has the scientific lead on EnMAP, Kayser-Threde in Munich is the industrial prime.The EnMAP instrument provides over 240 continuous spectral bands in the wavelength range between 420 and 2450 nm with a ground resolution of 30 m×30 m. Thus, the broad science and application community can draw from an extensive and highly resolved pool of information supporting the modeling and optimization process on their results. The performance of the hyperspectral instrument allows for a detailed monitoring, characterization and parameter extraction of rock/soil targets, vegetation, and inland and coastal waters on a global scale supporting a wide variety of applications in agriculture, forestry, water management and geology. The operation of an airborne system (ARES) as an element in the HGF hyperspectral network and the ongoing evolution concerning data handling and extraction procedures, will support the later inclusion process of EnMAP into the growing scientist and user communities.  相似文献   
75.
The first Korean multi-mission geostationary satellite, Communication, Ocean, and Meteorological Satellite (COMS) will be launched in 2010. The missions of this satellite will be Ka-band communications, ocean color monitoring, and meteorological imaging. The satellite was designed with only one solar array on the south panel. This novel configuration will keep imaging instruments on the north side from heating up. Asymmetry of the spacecraft configuration requires twice-a-day thruster-based Wheel Off-Loading (WOL) operations to keep the satellite attitude for imaging and communication. Thruster firings during the WOL operations cause the satellite orbit to change two times a day. Weekly East–West Station-Keeping (EWSK) and North–South Station-Keeping (NSSK) maneuver operations are planned for the COMS satellite in order to maintain the satellite in ±0.05° box at 128.2°E longitude.  相似文献   
76.
InSight Mars Lander Robotics Instrument Deployment System   总被引:1,自引:0,他引:1  
The InSight Mars Lander is equipped with an Instrument Deployment System (IDS) and science payload with accompanying auxiliary peripherals mounted on the Lander. The InSight science payload includes a seismometer (SEIS) and Wind and Thermal Shield (WTS), heat flow probe (Heat Flow and Physical Properties Package, HP3) and a precision tracking system (RISE) to measure the size and state of the core, mantle and crust of Mars. The InSight flight system is a close copy of the Mars Phoenix Lander and comprises a Lander, cruise stage, heatshield and backshell. The IDS comprises an Instrument Deployment Arm (IDA), scoop, five finger “claw” grapple, motor controller, arm-mounted Instrument Deployment Camera (IDC), lander-mounted Instrument Context Camera (ICC), and control software. IDS is responsible for the first precision robotic instrument placement and release of SEIS and HP3 on a planetary surface that will enable scientists to perform the first comprehensive surface-based geophysical investigation of Mars’ interior structure. This paper describes the design and operations of the Instrument Deployment Systems (IDS), a critical subsystem of the InSight Mars Lander necessary to achieve the primary scientific goals of the mission including robotic arm geology and physical properties (soil mechanics) investigations at the Landing site. In addition, we present test results of flight IDS Verification and Validation activities including thermal characterization and InSight 2017 Assembly, Test, and Launch Operations (ATLO), Deployment Scenario Test at Lockheed Martin, Denver, where all the flight payloads were successfully deployed with a balloon gravity offload fixture to compensate for Mars to Earth gravity.  相似文献   
77.
Japan Aerospace Exploration Agency (JAXA) has proposed an active debris removal using electro-dynamic tether to reduce large space debris in the low-Earth orbit. However, a tether strand is thin but long enough to have a large area so that it is vulnerable to small particles. This vulnerability might be the weakest point of a tether system against orbital debris. In order to overcome this weakest point, a double tether system, in which two tether strands are tied together at even intervals to form equally spaced loops, has been suggested as one of the promising candidates. This paper provides a mathematical approach to estimate the survival probability of a double tether system and then apply the approach to evaluate the mission success rate of the active debris removal using electro-dynamic tether that JAXA has proposed. It can be concluded the countermeasure to get enough success rate can be obtained. The result is simulated for Advanced Earth Observing Satellite II (ADEOS-II) re-entry from 800 km sun synchronized orbit to atmosphere. The simulation shows that mission success rate over 90% can be obtained with number of loops over 1000 and 10 mm clearance between two strands.  相似文献   
78.
This paper describes the development and validation of a transportable active transponder designed for the image calibration of Korea Multi-Purpose Satellite-5 (KOMPSAT-5) with a synthetic aperture radar (SAR). Ground targets are essential in SAR image calibration. The environment for the deployment of ground targets for SAR image calibration should provide uniformity and minimum interference. The Amazon or deserts are regarded as desirable environments. However, such environments for SAR image calibration are difficult to find in Korea. Thus, it will be advantageous to have an active transponder whose performance will not be severely limited by the absence of such uniform environment. We have therefore developed an active transponder which has an adjustable internal delay and into which the orbit data of an arbitrary satellite can be loaded. The stored obit data with the aid of an internal global positioning system (GPS) receiver and gyroscope enables the active transponder to point to a selected satellite. In addition, a virtual deployment of the active transponder is possible due to its adjustable internal delay. Thus, the developed active transponder can be deployed at any place without environmental constraint. The performance of the developed active transponder is validated using the satellite TerraSAR-X, which is already in operation. The test results show that the active transponder is successfully compliant with the requirements for KOMPSAT-5 image calibration.  相似文献   
79.
Kim  K. I.  Shuvalov  S. D. 《Cosmic Research》2021,59(6):493-500
Cosmic Research - The interaction of the solar wind with the plasma envelope of planets without their own global magnetic field has a different character than does the corresponding process near...  相似文献   
80.
The imaging flash lidar has been considered as a promising sensor for the future space missions such as autonomous safe landing, spacecraft rendezvous and docking due to its ability to provide a full 3D scene with a single or multiple laser pulses. The linear-mode flash lidar has been developed and demonstrated for an autonomous safe landing on the Moon in order to provide an accurate distance measurement to the landing site and its 3D image. Yet, the Geiger-mode flash lidar has also been recognized as an emerging technology for the space missions because it is highly sensitive even to a single photon and provides the very accurate timing of photon arrival. In this study, the performance of the Geiger-mode flash lidar is simulated in the approach phase and evaluated for the autonomous landing on the Moon. Furthermore, a new statistical signal processing algorithm is proposed to remove the noise counts in order to obtain the 3D image from a sequence of laser pulses in the situation of the fast moving spacecraft. The algorithm is shown to be effective for the autonomous landing due to its ability to remove noise events under the condition of low signal-to-noise ratio and improve ranging accuracy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号