全文获取类型
收费全文 | 2904篇 |
免费 | 4篇 |
国内免费 | 21篇 |
专业分类
航空 | 1439篇 |
航天技术 | 1097篇 |
综合类 | 11篇 |
航天 | 382篇 |
出版年
2019年 | 21篇 |
2018年 | 30篇 |
2016年 | 18篇 |
2014年 | 51篇 |
2013年 | 67篇 |
2012年 | 61篇 |
2011年 | 106篇 |
2010年 | 66篇 |
2009年 | 116篇 |
2008年 | 171篇 |
2007年 | 76篇 |
2006年 | 75篇 |
2005年 | 84篇 |
2004年 | 86篇 |
2003年 | 93篇 |
2002年 | 54篇 |
2001年 | 79篇 |
2000年 | 54篇 |
1999年 | 69篇 |
1998年 | 84篇 |
1997年 | 52篇 |
1996年 | 63篇 |
1995年 | 78篇 |
1994年 | 77篇 |
1993年 | 51篇 |
1992年 | 63篇 |
1991年 | 32篇 |
1990年 | 32篇 |
1989年 | 73篇 |
1988年 | 27篇 |
1987年 | 33篇 |
1986年 | 31篇 |
1985年 | 126篇 |
1984年 | 75篇 |
1983年 | 58篇 |
1982年 | 61篇 |
1981年 | 103篇 |
1980年 | 37篇 |
1979年 | 27篇 |
1978年 | 25篇 |
1977年 | 28篇 |
1976年 | 19篇 |
1975年 | 31篇 |
1974年 | 20篇 |
1973年 | 26篇 |
1972年 | 20篇 |
1970年 | 24篇 |
1969年 | 27篇 |
1967年 | 21篇 |
1966年 | 22篇 |
排序方式: 共有2929条查询结果,搜索用时 15 毫秒
31.
Aerodynamic characteristics of two-dimensional smart flap under the ground effect have been assessed by a numerical simulation. In this process, a pressure-based implicit procedure to solve Navier–Stokes equations on a nonorthogonal mesh with collocated finite volume formulation is used. The boundedness criteria for this procedure are determined from the Normalized Variable Diagram (NVD) scheme. The procedure incorporates the k–ε eddy–viscosity turbulence model. Cantilever beam with uniformly varying load with roller support at the free end is considered for the configuration of the smart flap. The method is first validated against experimental data. Then, the algorithm is applied for turbulent aerodynamic flows around airfoil with smart and conventional flaps for different attack angle, flap angle and ground clearance where the results of two flaps are compared. The comparisons show that the quality of the solution is considerable. 相似文献
32.
This paper investigates the dynamics and de-spin control of a massive target by a single tethered space tug in the post-capture phase. The dynamic model of the tethered system is derived and simplified to a dimensionless form. Further, a decoupled PD controller is proposed, and the local stability of the controller is analyzed by linearization technique. Parametric studies of the dynamics and de-spin control of a massive target are conducted to characterize the dynamic process of de-spin with the proposed control law. It is shown that the massive target can be de-span by a single and small space tug with limited thrust within finite time. The thrust tangent with the tether de-spins the target while the thrust normal to the tether prevents the tether from winding up the target. The tether length has a positive contribution to the de-spin of a target. The longer tether leads to a faster de-spin process. 相似文献
33.
It is widely accepted that diffusive shock acceleration is an important process in the heliosphere, in particular in producing
the energetic particles associated with interplanetary shocks driven by coronal mass ejections. In its simplest formulation
shock acceleration is expected to accelerate ions with higher mass to charge ratios less efficiently than those with lower
mass to charge. Thus it is anticipated that the Fe/O ratio in shock-accelerated ion populations will decrease with increasing
energy above some energy. We examine the circumstances of five interplanetary shocks that have been reported to have associated
populations in which Fe/O increases with increasing energy. In each event, the situation is complex, with particle contributions
from other sources in addition to the shock. Furthermore, we show that the Fe/O ratio in shock-accelerated ions can decrease
even when the shock is traveling through an Fe-rich ambient ion population. Thus, although shock acceleration of an Fe-rich
suprathermal population has been proposed to explain large Fe-rich solar particle events, we find no support for this proposal
in these observations. 相似文献
34.
Type II, III, and continuum solar radio events, as well as intense terrestrial magnetospheric radio emissions, were observed at low frequencies (10 MHz to 30 kHz) by the IMP-6 satellite during the period of high solar activity in August 1972. This review covers briefly the unique direction finding capability of the experiment, as well as a detailed chronology of the low frequency radio events, and, where possible, their association with both groundbased radio observations and solar flares. The attempted observation of solar bursts in the presence of intense magnetospheric noise may, as illustrated, lead to erroneous results in the absence of directional information. The problem of assigning an electron density scale and its influence on determining burst trajectories is reviewed. However, for the disturbed conditions existing during the period in question, we feel that such trajectories cannot be determined accurately by this method. In conclusion, the capabilities, limitations, and observing programs of present and future satellite experiments are briefly discussed. 相似文献
35.
E. H. B. M. Gronenschild R. Mewe N. J. Westergaard J. Heise F. D. Seward T. Chlebowski N. P. M. Kuin A. C. Brinkman J. H. Dijkstra H. W. Schnopper 《Space Science Reviews》1981,30(1-4):185-189
The binary system Capella (G6 III + F9 III) has been observed on 1979 March 15 and on 1980 March 15–17 with the Objective Grating Spectrometer (OGS) onboard theEinstein Observatory. The spectrum measured with the 1000 l/mm grating covers the range 5–30 Å with a resolution < 1 Å. The spectra show evidence for a bimodal temperature distribution of emission measure in an optically thin plasma with one component 5 million degrees and the other one 10 million degrees. Spectral features can be identified with line emissions from O VIII, Fe XVII, Fe XVIII, Fe XXIV, and Ne X ions. Good spectral fits have been obtained assuming standard cosmic abundances. The data are interpreted in terms of emission from hot static coronal loops rather similar to the magnetic arch structures found on the Sun. It is shown that the conditions required by this model exist on Capella. Mean values of loop parameters are derived for both temperature components. 相似文献
36.
B. Aschenbach H. Bräuninger U. Briel W. Brinkmann H. Fink N. Heinecke H. Hippmann G. Kettenring G. Metzner A. Ondrusch E. Pfeffermann P. Predehl G. Reger K. -H. Stephan J. Trümper H. U. Zimmermann 《Space Science Reviews》1981,30(1-4):569-573
The primary scientific objective of the ROSAT mission is to perform the first all sky survey with an imaging X-ray telescope leading to an improvement in sensitivity by several orders of magnitude compared with previous surveys. Consequently a large number of new sources (> 105) will be discovered and located with an accuracy of 1 arcmin. After completion of the survey which will take about half a year the instrument will be used for detailed observations of selected targets.The X-ray telescope consists of a fourfold nested Wolter type I mirror system with 80 cm aperture and 240 cm focal length, and three focal plane detectors. In the baseline version these will be imaging proportional counters (0.1 – 2 keV) providing a field of view of 20 × 20. 相似文献
37.
E. Kendziorra W. Collmar H. Brunner R. Staubert W. Pietsch 《Space Science Reviews》1985,40(3-4):361-365
From a short observation of GX 5-1 with EXOSAT we have derived information on spectral and temporal behaviour in the energy range 1–20 keV. The source was found to be variable on time scales from 10 s to 1 h. Describing the spectrum one is forced to assume at least two spectral components. The best fit is reached using a spectrum composed of two blackbody functions with typical temperatures 1 keV and 2 keV, corresponding to apparent blackbody radii of 43 km and 11 km, respectively (for a distance of 10 kpc). With respect to the hot component there is evidence for variability in temperature as well as in apparent blackbody radius. No periodic variability has been found over the period range 0.25 s to 2000 s. There is no evidence for an iron emission line. 相似文献
38.
Ergun R.E. Carlson C.W. Mozer F.S. Delory G.T. Temerin M. McFadden J.P. Pankow D. Abiad R. Harvey P. Wilkes R. Primbsch H. Elphic R. Strangeway R. Pfaff R. Cattell C.A. 《Space Science Reviews》2001,98(1-2):67-91
We describe the electric field sensors and electric and magnetic field signal processing on the FAST (Fast Auroral SnapshoT) satellite. The FAST satellite was designed to make high time resolution observations of particles and electromagnetic fields in the auroral zone to study small-scale plasma interactions in the auroral acceleration region. The DC and AC electric fields are measured with three-axis dipole antennas with 56 m, 8 m, and 5 m baselines. A three-axis flux-gate magnetometer measures the DC magnetic field and a three-axis search coil measures the AC magnetic field. A central signal processing system receives all signals from the electric and magnetic field sensors. Spectral coverage is from DC to 4 MHz. There are several types of processed data. Survey data are continuous over the auroral zone and have full-orbit coverage for fluxgate magnetometer data. Burst data include a few minutes of a selected region of the auroral zone at the highest time resolution. A subset of the burst data, high speed burst memory data, are waveform data at 2×106 sample s–1. Electric field and magnetic field data are primarily waveforms and power spectral density as a function of frequency and time. There are also various types of focused data processing, including cross-spectral analysis, fine-frequency plasma wave tracking, high-frequency polarity measurement, and wave-particle correlations. 相似文献
39.
F. Bagenal A. Adriani F. Allegrini S. J. Bolton B. Bonfond E. J. Bunce J. E. P. Connerney S. W. H. Cowley R. W. Ebert G. R. Gladstone C. J. Hansen W. S. Kurth S. M. Levin B. H. Mauk D. J. McComas C. P. Paranicas D. Santos-Costa R. M. Thorne P. Valek J. H. Waite P. Zarka 《Space Science Reviews》2017,213(1-4):219-287
In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets. 相似文献
40.
V. A. Sadovnichiy A. M. Amelyushkin V. Angelopoulos V. V. Bengin V. V. Bogomolov G. K. Garipov E. S. Gorbovskoy B. Grossan P. A. Klimov B. A. Khrenov J. Lee V. M. Lipunov G. W. Na M. I. Panasyuk I. H. Park V. L. Petrov C. T. Russell S. I. Svertilov E. A. Sigaeva G. F. Smoot Yu. Shprits N. N. Vedenkin I. V. Yashin 《Cosmic Research》2013,51(6):427-433
At present, the Institute of Nuclear Physics of Moscow State University, in cooperation with other organizations, is preparing space experiments onboard the Lomonosov satellite. The main goal of this mission is to study extreme astrophysical phenomena such as cosmic gamma-ray bursts and ultra-high-energy cosmic rays. These phenomena are associated with the processes occurring in the early universe in very distant astrophysical objects, therefore, they can provide information on the first stages of the evolution of the universe. This paper considers the main characteristics of the scientific equipment aboard the Lomonosov satellite. 相似文献