首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   0篇
  国内免费   1篇
航空   42篇
航天技术   37篇
航天   25篇
  2021年   4篇
  2019年   4篇
  2018年   8篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   6篇
  2012年   5篇
  2011年   9篇
  2010年   1篇
  2009年   3篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1988年   1篇
  1985年   1篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1981年   7篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有104条查询结果,搜索用时 796 毫秒
61.
An effective and self-sustainable artificial habitat design is essential for human spaceflight and expansion of mankind into orbit or towards other celestial bodies. There are two approaches that need to be implemented in future sustainable habitats: the use of re-cycling technologies in order to gain experience in closed-loop processes and the primary production of resource materials using In Situ Resource Utilisation (ISRU) principles. Various products will be provided and, where applicable, recycled in such a system taking into account basic human factors requirements such as crew work load capacity, safety and well-being, namely:  相似文献   
62.
The monitoring of solar wind parameters is a key problem of the space weather program. We are presenting a new solution of plasma parameter determination suitable for small and fast solar wind monitors. The first version will be launched during the SPECTR-R project into a highly elongated orbit with apogee ∼350,000 km. The method is based on simultaneous measurements of the total ion flux and ion integral energy spectrum by six identical Faraday cups. Three of them are dedicated to determination of the ion flow direction, the other three (equipped with control grids supplied by a retarding potential) are used for determination of the density, temperature, and speed of the plasma flow. The version under development is primarily designed for the measurements in the solar wind and tail magnetosheath, thus for velocities range from 270 to 750 km/s, temperatures from 1 to 30 eV, and densities up to 200 cm−3. However, the instrument design can be simply modified for measurements in other regions with a substantial portion of low-energy plasma as a subsolar magnetosheath, cusp or low-latitude boundary layer. Testing of the engineering model shows that the proposed method can provide reliable plasma parameters with a high time resolution (up to 8 Hz). The paper presents not only the method and its technical realization but it documents all advantages and peculiarities of the suggested approach.  相似文献   
63.
Access of low energy cosmic rays to any position on the Earth depends on the state of the magnetosphere. Anisotropy of cosmic rays, deduced from the neutron monitor network, must assume the variable transmissivity of the magnetosphere especially during the geomagnetic disturbances. We illustrate that computations based on different available models of geomagnetic field during selected strong geomagnetic disturbances in 2003 and 2004 imply different profiles of cut-off rigidities in time, different transmissivity functions and different asymptotic directions. Using of cosmic ray records by neutron monitors at middle and low latitudes during geomagnetically active periods, in addition to cosmic ray anisotropy in interplanetary space deduced from high and low energy cosmic ray ground based measurements, may be used for checking validity of geomagnetic field models.  相似文献   
64.
65.
The creep of polycrystalline Hg2X2 (where X = Cl, Br, J) under the terrestrial and space conditions is studied in the present experiment. The authors suppose that the creep of the Hg2X2 cylindrical sample can be studied by the help of the theory of micropolar (non-Newtonian) fluids. In accordance with this theory we obtain the flux of fluid through any cross-section as functions of the radius, viscosity coefficients, the gradient of pressure and the gravity acceleration. In this paper a comparison of the theoretical results for normal and zero- gravity conditions is given. It is shown that the annealing of materials having a broad region of plasticity under microgravity conditions can lead to great improvement in optical as well as mechanical qualities of the crystal. Technical aspects of the experiment are also described.  相似文献   
66.
The results are presented of the exposure of Drosophila melanogaster to microgravity conditions during a 15-day biosatellite flight, Biokosmos 9, in a joint ESA-URSS project. The experimental containers were loaded before launch with a set of Drosophila melanogaster Oregon R larvae so that imagoes were due to emerge half-way through the flight. A large number of normally developed larvae were recovered from the space-flown containers. These larvae were able to develop into normal adults confirming earlier results that Drosophila melanogaster of a wild-type constitution can develop normally in the absence of gravity. However, microgravity exposure clearly enhances the number of growing embryos laid by the flies and possibly slows down the developmental pace of the microgravity-exposed animals. Due to some problems in the experimental set-up, this slowing down needs to be verified in future experiments. No live adult that had been exposed to microgravity was recovered from the experiment, so that no life span studies could be carried out, but adult males emerged from the recovered embyros showed a slight shortening in life span and a lower performance in other experimental tests of aging. This agrees with the results of previous experiments performed by our groups.  相似文献   
67.
This paper highlights significant advances in plasmaspheric wave research with Cluster and Image observations. This leap forward was made possible thanks to the new observational capabilities of these space missions. On one hand, the multipoint view of the four Cluster satellites, a unique capability, has enabled the estimation of wave characteristics impossible to derive from single spacecraft measurements. On the other hand, the Image experiments have enabled to relate large-scale plasmaspheric density structures with wave observations and provide radio soundings of the plasmasphere with unprecedented details. After a brief introduction on Cluster and Image wave instrumentation, a series of sections, each dedicated to a specific type of plasmaspheric wave, put into context the recent advances obtained by these two revolutionary missions.  相似文献   
68.
The detection of organic molecules of unambiguous biological origin is fundamental for the confirmation of present or past life. Planetary exploration requires the development of miniaturized apparatus for in situ life detection. Analytical techniques based on mass spectrometry have been traditionally used in space science. Following the Viking landers, gas chromatography-mass spectrometry (GC-MS) for organic detection has gained general acceptance and has been used successfully in the Cassini–Huygens mission to Titan. Microfluidics allows the development of miniaturized capillary electrophoresis devices for the detection of important molecules for life, like amino acids or nucleobases. Recently, a new approach is gaining acceptance in the space science community: the application of the well-known, highly specific, antibody–antigen affinity interaction for the detection and identification of organics and biochemical compounds. Antibodies can specifically bind a plethora of structurally different compounds of a broad range of molecular sizes, from amino acids level to whole cells. Antibody microarray technology allows us to look for the presence of thousands of different compounds in a single assay and in just one square centimeter. Herein, we discuss several important issues—most of which are common with other instruments dealing with life signature detection in the solar system—that must be addressed in order to use antibody microarrays for life detection and planetary exploration. These issues include (1) preservation of biomarkers, (2) the extraction techniques for biomarkers, (3) terrestrial analogues, (4) the antibody stability under space environments, (5) the selection of unequivocal biomarkers for the antibody production, or (6) the instrument design and implementation.  相似文献   
69.
Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt.  相似文献   
70.
Chemolithoautotrophy based on reduced inorganic minerals is considered a primitive energy transduction system. Evidence that a high number of meteorites crashed into the planet during the early period of Earth history led us to test the ability of iron-oxidizing bacteria to grow using iron meteorites as their source of energy. Here we report the growth of two acidophilic iron-oxidizing bacteria, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans, on a piece of the Toluca meteorite as the only source of energy. The alteration of the surface of the exposed piece of meteorite, the solubilization of its oxidized metal constituents, mainly ferric iron, and the formation of goethite precipitates all clearly indicate that iron-meteorite-based chemolithotrophic metabolism is viable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号