首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   0篇
  国内免费   1篇
航空   42篇
航天技术   37篇
航天   25篇
  2021年   4篇
  2019年   4篇
  2018年   8篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   6篇
  2012年   5篇
  2011年   9篇
  2010年   1篇
  2009年   3篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1988年   1篇
  1985年   1篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1981年   7篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
41.
The whistler-mode waves and electron temperature anisotropy play a key role prior to and during magnetic reconnection. On August 21, 2002, the Cluster spacecrafts encountered a quasi-collisionless magnetic reconnection event when they crossed the plasma sheet. Prior to the southward turning of magnetospheric magnetic field and high speed ion flow, the whistler-mode waves and positive electron temperature anisotropy are simultaneously observed. Theoretic analysis shows that the electrons with positive temperature anisotropy can excite the whistler-mode waves via cyclotron resonances. Using the data of particles and magnetic field, we estimated the whistler-mode wave growth rate and the ratio of whistler-mode growth rate to wave frequency. They are 0.0016fce (Electron cyclotron frequency) and 0.0086fce, respectively. Therefore the whistler-mode waves can grow quickly in the current sheet. The combined observations of energetic electron beams and waves show that after the southward turning of magnetic field, energetic electrons in the reconnection process are accelerated by the whistler-mode waves.  相似文献   
42.
Based on analysis of MHD equations and the results of numerical simulation in the magneto-sheath it is demonstrated that the total pressure on the magnetopause differs from the solar wind dynamic pressure in the majority of cases. From the equation of motion it follows that the total pressure is reduced due to deflection from the Sun-Earth line. At the same time, it increases because of formation of a magnetic barrier. This result is consistent with experimentally observed expansion of the magnetosphere for the radial direction of the interplanetary magnetic field, when no magnetic barrier is formed. In this paper we compare the behavior of pressure along the Sun-Earth line for the northward and radial interplanetary field, using the results of numerical MHD simulation and observational data from THEMIS. In the isotropic MHD approximation, the difference between the total pressure on the subsolar magnetopause at northern and radial IMFs does not exceed 10–12 percent. However, in the anisotropic approximation this difference increases up to 15–20 percent. The results of anisotropic modeling well agree with observed averaged profiles of pressure components in the subsolar magnetosheath.  相似文献   
43.
44.
Seven different models are applied to the same problem of simulating the Sun’s coronal magnetic field during the solar eclipse on 2015 March 20. All of the models are non-potential, allowing for free magnetic energy, but the associated electric currents are developed in significantly different ways. This is not a direct comparison of the coronal modelling techniques, in that the different models also use different photospheric boundary conditions, reflecting the range of approaches currently used in the community. Despite the significant differences, the results show broad agreement in the overall magnetic topology. Among those models with significant volume currents in much of the corona, there is general agreement that the ratio of total to potential magnetic energy should be approximately 1.4. However, there are significant differences in the electric current distributions; while static extrapolations are best able to reproduce active regions, they are unable to recover sheared magnetic fields in filament channels using currently available vector magnetogram data. By contrast, time-evolving simulations can recover the filament channel fields at the expense of not matching the observed vector magnetic fields within active regions. We suggest that, at present, the best approach may be a hybrid model using static extrapolations but with additional energization informed by simplified evolution models. This is demonstrated by one of the models.  相似文献   
45.
Using the recently converted to digital format heliophysics catalogues of the Ebro Observatory published in the 1930s, we analyse simultaneously the temporal variation and asymmetry of two different solar structures located at different layers of the solar atmosphere: sunspots and solar plages. In particular, we do the research for all the types of sunspots and plages, including the daily and relative frequencies over the solar cycle. The data were catalogued using the sunspot Cortie classification and a solar plage classification scheme proposed by the Ebro Observatory, which group the phenomena by size and shape. For all types of both sunspots and plages, we observe a decrease in their frequency up to the end of solar cycle 16 and an increase over the beginning of solar cycle 17. Furthermore, we note that small sunspot groups are more likely to happen than bigger groups, although single big spots dominate near the solar minimum. The daily frequency of solar plage occurrences shows that there is not a dominance of compact or scattered solar plages. The North-South occurrence distribution of every type in both sunspots and solar plages shows an asymmetry during the solar cycle: in its declining phase, such asymmetry is directed to the north, while in the beginning of a new cycle is directed to the south.  相似文献   
46.
A study of the uncertainty propagation in ITRS/GCRS transformation is presented in this work. General law of propagation of variances is applied to the ITRS/GCRS transformation matrix, deriving the analytical expressions to compute GCRS position uncertainty. This evaluation is based on EOP uncertainties provided by IERS long-term series and formal uncertainties of ITRS-compatible coordinates. Numerical results for the period 1998–2016 are shown and discussed for ITRS positions in different altitudes and latitudes, providing graphical and numerical insights of the mapping of EOP uncertainties to transformed coordinates.Eventually, an analysis of short-term evolution of the Celestial Intermediate Pole coordinates in the GCRS provided by the IAU2006/2000A precession-nutation model is carried out, in order to assess the feasibility to potentially broadcast these parameters in GNSS navigation message. This approach would facilitate the dissemination of terrestrial-celestial transformation parameters for real time users, given that polar motion and UT1-UTC are already foreseen in GPS interface specification. The results presented in this work confirm the feasibility of this idea.  相似文献   
47.
During the maximum of Solar Cycle 23, large active regions had a long life, spanning several solar rotations, and produced large numbers of X-class flares and CMEs, some of them associated to magnetic clouds (MCs). This is the case for the Halloween active regions in 2003. The most geoeffective MC of the cycle (Dst = −457) had its source during the disk passage of one of these active regions (NOAA 10501) on 18 November 2003. Such an activity was presumably due to continuous emerging magnetic flux that was observed during this passage. Moreover, the region exhibited a complex topology with multiple domains of different magnetic helicities. The complexity was observed to reach such unprecedented levels that a detailed multi-wavelength analysis is necessary to precisely identify the solar sources of CMEs and MCs. Magnetic clouds are identified using in situ measurements and interplanetary scintillation (IPS) data. Results from these two different sets of data are also compared.  相似文献   
48.
This paper deals with the difficulty of decoding the origins of natural structures through the study of their morphological features. We focus on the case of primitive life detection, where it is clear that the principles of comparative anatomy cannot be applied. A range of inorganic processes are described that result in morphologies emulating biological shapes, with particular emphasis on geochemically plausible processes. In particular, the formation of inorganic biomorphs in alkaline silica-rich environments are described in detail.  相似文献   
49.
Two structural schemes of the Bohemian Massif are presented and compared. The first one is a result of interpretation of various geophysical data and the second one is compiled on the basis of decoding of space imagery from different sources (Kosmos, Landsat etc.). Both schemes have many structural features in common, but there are diversities namely in the hierarchy of directions and regional distribution of linear structures. These problems are discussed in detail. For example, the most impressive system of structures is the NW-SE system in both schemes, whereas the NE-SW is more remarkable in the geophysical scheme; the N-S and the E-W systems are best expressed in the scheme of photolineaments. These facts are due to the genesis, age, development and dynamic characteristics of respective structural systems. The circular structural features namely those of large size are mostly remarkable in space imagery. At present, they are not distinguished genetically but only described regionally.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号