首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
航空   12篇
航天技术   12篇
综合类   1篇
航天   2篇
  2018年   1篇
  2016年   1篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2008年   4篇
  2005年   1篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1995年   1篇
  1992年   2篇
  1991年   1篇
  1986年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有27条查询结果,搜索用时 791 毫秒
11.
Plants can provide a means for removing carbon dioxide (CO2) while generating oxygen (O2) and clean water for life support systems in space. To study this, 20 m2 stands of potato (Solanum tuberosum L.) plants were grown in a large (113 m3 vol.), atmospherically closed chamber. Photosynthetic uptake of CO2 by the stands was detected about 10 DAP (days after planting), after which photosynthetic rates rose rapidly as stand ground cover and total light interception increased. Photosynthetic rates peaked ca. 50 DAP near 45 μmol CO2 m−2 s−1 under 865 μmol m−2 s−1 PPF (average photosynthetic photon flux), and near 35 μmol CO2 m−2 s−1 under 655 μmol m−2 s−1 PPF. Short term changes in PPF caused a linear response in stand photosynthetic rates up to 1100 μmol m−2 s−1 PPF, with a light compensation point of 185 μmol m−2 s−1 PPF. Comparisons of stand photosynthetic rates at different CO2 concentrations showed a classic C3 response, with saturation occurring near 1200 μmol mol−1 CO2 and compensation near 100 μmol mol−1 CO2. In one study, the photoperiod was changed from 12 h light/12 h dark to continuous light at 58 DAP. This caused a decrease in net photosynthetic rates within 48 h and eventual damage (scorching) of upper canopy leaves, suggesting the abrupt change stressed the plants and/or caused feedback effects on photosynthesis. Dark period (night) respiration rates increased during early growth as standing biomass increased and peaked near 9 μmol CO2 m−2 s−1 ca. 50 DAP, after which rates declined gradually with age. Stand transpiration showed a rapid rise with canopy ground cover and peaked ca. 50 DAP near 8.9 L m−2 d−1 under 860 μmol m−2 s−1 PPF and near 6.3 L m−2 d−1 under 650 μmol m−2 s−1 PPF. Based on the best photosynthetic rates from these studies, approximately 25 m2 of potato plants under continuous cultivation would be required to support the CO2 removal and O2 requirements for one person.  相似文献   
12.
Since 1972, nearly continuous observations of coronal holes and their associated photospheric magnetic fields have been made using a variety of satellite and ground-based equipment. The results of comparisons of these observations are reviewed and it is demonstrated that the structure and evolution of coronal holes is basically governed by the large-scale distribution of photospheric magnetic flux. Non-polar holes form in the decaying remnants of bipolar magnetic regions in areas with a large-scale flux imbalance. There is strong indirect evidence that the magnetic field in coronal holes is always open to interplanetary space but not all open-field regions have associated coronal holes. The well-observed declining phase of the last solar cycle was characterized by stable magnetic field and coronal hole patterns which were associated with recurrent, high-speed wind streams and interplanetary magnetic field patterns at the Earth. The ascending phase of the current cycle has been characterized by transient magnetic field and coronal hole patterns which tend to occur at high solar latitudes. This shift in magnetic field and coronal hole patterns has resulted in a less obvious and more complicated association with high-speed wind streams at the Earth.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.Visiting Scientist, Kitt Peak National Observatory.  相似文献   
13.
Extended exposure to microgravity conditions results in significant bone loss. Coupled with radiation exposure, this phenomenon may place astronauts at a greater risk for mission-critical fractures. In a previous study, we identified a profound and prolonged loss of trabecular bone (29–39%) in mice following exposure to an acute, 2 Gy dose of radiation simulating both solar and cosmic sources. However, because skeletal strength depends on trabecular and cortical bone, accurate assessment of strength requires analysis of both bone compartments. The objective of the present study was to examine various properties of cortical bone in mice following exposure to multiple types of spaceflight-relevant radiation. Nine-week old, female C57BL/6 mice were sacrificed 110 days after exposure to a single, whole body, 2 Gy dose of gamma, proton, carbon, or iron radiation. Femora were evaluated with biomechanical testing, microcomputed tomography, quantitative histomorphometry, percent mineral content, and micro-hardness analysis. Compared to non-irradiated controls, there were significant differences compared to carbon or iron radiation for only fracture force, medullary area and mineral content. A greater differential effect based on linear energy transfer (LET) level may be present: high-LET (carbon or iron) particle irradiation was associated with a decline in structural properties (maximum force, fracture force, medullary area, and cortical porosity) and mineral composition compared to low-LET radiation (gamma and proton). Bone loss following irradiation appears to be largely specific to trabecular bone and may indicate unique biological microenvironments and microdosimetry conditions. However, the limited time points examined and non-haversian skeletal structure of the mice employed highlight the need for further investigation.  相似文献   
14.
LISA Pathfinder is an ESA mission due to be launched in the next two years. The gravity gradiometer onboard has the sensitivity required to test predictions by gravitational theories proposed as alternatives to Dark Matter such as TeVeS. Within the Solar System measurable effects are predicted only in the vicinity of gravitational saddle points (SP). For this reason it has been proposed to fly LPF by the Earth–Sun SP, at some 259,000 km from Earth. This could be done in an extension to the nominal mission which uses a Lissajous orbit about the Earth–Sun L1 point. The responsibility for LPF mission design lies with ESA/ESOC, who have designed the transfer trajectories, orbits about L1, and station keeping strategies. This article describes an analysis performed by Astrium to support a suggestion for a possible mission extension to a saddle point crossing. With only very limited fuel availability, reaching the saddle point is a significant challenge. In this article, we present recent advances in the work on trajectory design. It is demonstrated that reaching the SP is feasible once the LPF mission is completed. Furthermore, in a significant enhancement, it is demonstrated that trajectories including more than one SP flyby are possible, thus improving the science return for this proposed mission extension.  相似文献   
15.
he burst alert telescope (BAT) is one of three instruments on the Swift MIDEX spacecraft to study gamma-ray bursts (GRBs). The BAT first detects the GRB and localizes the burst direction to an accuracy of 1–4 arcmin within 20 s after the start of the event. The GRB trigger initiates an autonomous spacecraft slew to point the two narrow field-of-view (FOV) instruments at the burst location within 20–70 s so to make follow-up X-ray and optical observations. The BAT is a wide-FOV, coded-aperture instrument with a CdZnTe detector plane. The detector plane is composed of 32,768 pieces of CdZnTe (4×4×2 mm), and the coded-aperture mask is composed of ∼52,000 pieces of lead (5×5×1 mm) with a 1-m separation between mask and detector plane. The BAT operates over the 15–150 keV energy range with ∼7 keV resolution, a sensitivity of ∼10−8 erg s−1 cm−2, and a 1.4 sr (half-coded) FOV. We expect to detect > 100 GRBs/year for a 2-year mission. The BAT also performs an all-sky hard X-ray survey with a sensitivity of ∼2 m Crab (systematic limit) and it serves as a hard X-ray transient monitor.  相似文献   
16.
Plant lighting is a critical issue for cost effectiveness of bioregenerative systems. A plant lighting system using sunlight has been investigated and compared to systems using electrical lighting. Co-generation of electricity and use of in situ resource utilization (ISRU) were also considered. The fixed part of equivalent system mass was found to be reduced by factors of from 3.1 to 3.9, according to the mission assumptions. The time-dependent part of equivalent system mass was reduced by a smaller value, of about 1.05. Cost effectiveness of bioregeneration has been compared to the cost of shipping food. Break-even times for different Lunar and Mars missions were generally in the order of 2–10 years, and were quite sensitive to the assumptions. There is significant scope for future refinement of these values, and work is ongoing.  相似文献   
17.
We report results from analysis of data from Pioneer Saturn's Imaging Photopolarimeter. These include the discovery of a new ring and satellite, the structure of the atmosphere of Saturn and Titan, the inhomogeneous nature of Saturn's rings, and a model for the rings' formation and bimodal particle size distribution.  相似文献   
18.
19.
Neil Gough 《西南航空》2001,58(2):90-91
THE geographical point of departure where river becomes ocean almost always makes for an ideal port of call.  相似文献   
20.
The influence of microgravity on lymphocyte activation is central to the understanding of immunological function in space. Moreover, the adaptation of groundbased technologies to microgravity conditions presents opportunities for biotechnological applications including high efficiency production of antibody forming hybridomas. Because the emerging technology of microgravity hybridoma generation is dependent upon activation and cultivation of B lymphocytes during flight, we have adapted mitogen-driven B lymphocyte stimulation and culture that allows for the in vitro generation of large numbers of antibody forming cells suitable for cell fusion over a period of 1-2 weeks. We believe that this activation and cultivation system can be flown on near-term space flights to test fundamental hypotheses about mammalian cell activation, cell fusion, metabolism, secretion, growth, and bio-separation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号