全文获取类型
收费全文 | 114篇 |
免费 | 0篇 |
国内免费 | 2篇 |
专业分类
航空 | 47篇 |
航天技术 | 22篇 |
综合类 | 1篇 |
航天 | 46篇 |
出版年
2022年 | 1篇 |
2021年 | 2篇 |
2018年 | 4篇 |
2017年 | 5篇 |
2016年 | 1篇 |
2015年 | 2篇 |
2014年 | 7篇 |
2013年 | 8篇 |
2012年 | 6篇 |
2011年 | 9篇 |
2010年 | 7篇 |
2009年 | 7篇 |
2008年 | 8篇 |
2007年 | 9篇 |
2006年 | 10篇 |
2005年 | 4篇 |
2004年 | 5篇 |
2003年 | 3篇 |
2002年 | 3篇 |
2000年 | 3篇 |
1997年 | 3篇 |
1996年 | 1篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1983年 | 1篇 |
排序方式: 共有116条查询结果,搜索用时 26 毫秒
91.
Abstract The Life Marker Chip (LMC) instrument is part of the proposed payload on the ESA ExoMars rover that is scheduled for launch in 2018. The LMC will use antibody-based assays to detect molecular signatures of life in samples obtained from the shallow subsurface of Mars. For the LMC antibodies, the ability to resist inactivation due to space particle radiation (both in transit and on the surface of Mars) will therefore be a prerequisite. The proton and neutron components of the mission radiation environment are those that are expected to have the dominant effect on the operation of the LMC. Modeling of the radiation environment for a mission to Mars led to the calculation of nominal mission fluences for proton and neutron radiation. Various combinations and multiples of these values were used to demonstrate the effects of radiation on antibody activity, primarily at the radiation levels envisaged for the ExoMars mission as well as at much higher levels. Five antibodies were freeze-dried in a variety of protective molecular matrices and were exposed to various radiation conditions generated at a cyclotron facility. After exposure, the antibodies' ability to bind to their respective antigens was assessed and found to be unaffected by ExoMars mission level radiation doses. These experiments indicated that the expected radiation environment of a Mars mission does not pose a significant risk to antibodies packaged in the form anticipated for the LMC instrument. Key Words: Life-detection instruments-Planetary habitability and biosignatures-Radiation-Mars-Life in extreme environments. Astrobiology 12, 718-729. 相似文献
92.
Edwards Christopher S. Christensen Philip R. Mehall Greg L. Anwar Saadat Tunaiji Eman Al Badri Khalid Bowles Heather Chase Stillman Farkas Zoltan Fisher Tara Janiczek John Kubik Ian Harris-Laurila Kelly Holmes Andrew Lazbin Igor Madril Edgar McAdam Mark Miner Mark O’Donnell William Ortiz Carlos Pelham Daniel Patel Mehul Powell Kathryn Shamordola Ken Tourville Tom Smith Michael D. Smith Nathan Woodward Rob Weintraub Aaron Reed Heather Pilinski Emily B. 《Space Science Reviews》2021,217(7):1-37
Space Science Reviews - Modern observatories have revealed the ubiquitous presence of magnetohydrodynamic waves in the solar corona. The propagating waves (in contrast to the standing waves) are... 相似文献
93.
Mark Nelson W.F. DempsterJ.P. Allen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
To achieve sustainable, healthy closed ecological systems requires solutions to challenges of closing the water cycle – recycling wastewater/irrigation water/soil medium leachate and evaporated water and supplying water of required quality as needed for different needs within the facility. Engineering Biosphere 2, the first multi-biome closed ecological system within a total airtight footprint of 12,700 m2 with a combined volume of 200,000 m3 with a total water capacity of some 6 × 106 L of water was especially challenging because it included human inhabitants, their agricultural and technical systems, as well as five analogue ecosystems ranging from rainforest to desert, freshwater ecologies to saltwater systems like mangrove and mini-ocean coral reef ecosystems. By contrast, the Laboratory Biosphere – a small (40 m3 volume) soil-based plant growth facility with a footprint of 15 m2 – is a very simplified system, but with similar challenges re salinity management and provision of water quality suitable for plant growth. In Biosphere 2, water needs included supplying potable water for people and domestic animals, irrigation water for a wide variety of food crops, and recycling and recovering soil nutrients from wastewater. In the wilderness biomes, providing adequately low salinity freshwater terrestrial ecosystems and maintaining appropriate salinity and pH in aquatic/marine ecosystems were challenges. The largest reservoirs in Biosphere 2 were the ocean/marsh with some 4 × 106 L, soil with 1 to 2 × 106 l, primary storage tank with 0 to 8 × 105 L and storage tanks for condensate and soil leachate collection and mixing tanks with a capacity of 1.6 × 105 L to supply irrigation for farm and wilderness ecosystems. Other reservoirs were far smaller – humidity in the atmosphere (2 × 103 L), streams in the rainforest and savannah, and seasonal pools in the desert were orders of magnitude smaller (8 × 104 L). Key technologies included condensation from humidity in the air handlers and from the glass space frame to produce high quality freshwater, wastewater treatment with constructed wetlands and desalination through reverse osmosis and flash evaporation were key to recycling water with appropriate quality throughout the Biosphere 2 facility. Wastewater from all human uses and the domestic animals in Biosphere 2 was treated and recycled through a series of constructed wetlands, which had hydraulic loading of 0.9–1.1 m3 day−1 (240–290 gal d−1). Plant production in the wetland treatment system produced 1210 kg dry weight of emergent and floating aquatic plant wetland which was used as fodder for the domestic animals while remaining nutrients/water was reused as part of the agricultural irrigation supply. There were pools of water with recycling times of days to weeks and others with far longer cycling times within Biosphere 2. By contrast, the Laboratory Biosphere with a total water reservoir of less than 500 L has far quicker cycling rapidity: for example, atmospheric residence time for water vapor was 5–20 min in the Laboratory Biosphere vs. 1–4 h in Biosphere 2, as compared with 9 days in the Earth’s biosphere. Just as in Biosphere 2, humidity in the Laboratory Biosphere amounts to a very small reservoir of water. The amount of water passing through the air in the course of a 12-h operational day is two orders of magnitude greater than the amount stored in the air. Thus, evaporation and condensation collection are vital parts of the recycle system just as in Biosphere 2. The water cycle and sustainable water recycling in closed ecological systems presents problems requiring further research – such as how to control buildup of salinity in materially closed ecosystems and effective ways to retain nutrients in optimal quantity and useable form for plant growth. These issues are common to all closed ecological systems of whatever size, including planet Earth’s biosphere and are relevant to a global environment facing increasing water shortages while maintaining water quality for human and ecosystem health. Modular biospheres offer a test bed where technical methods of resolving these problems can be tested for feasibility. 相似文献
94.
Mark Nelson William F. Dempster John P. Allen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Closed ecological systems are desirable for a number of purposes. In space life support systems, material closure allows precious life-supporting resources to be kept inside and recycled. Closure in small biospheric systems facilitates detailed measurement of global ecological processes and biogeochemical cycles. Closed testbeds facilitate research topics which require isolation from the outside (e.g. genetically modified organisms; radioisotopes) so their ecological interactions and fluxes can be studied separate from interactions with the outside environment. But to achieve and maintain closure entails solving complex ecological challenges. These challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet, recycling nutrients and maintaining soil fertility, the maintenance of healthy air and water and preventing the loss of critical elements from active circulation. In biospheric facilities, the challenge is also to produce analogues to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils. Other challenges include the dynamics and genetics of small populations, the psychological challenges for small isolated human groups and backup technologies and strategic options which may be necessary to ensure long-term operation of closed ecological systems. 相似文献
95.
William Marshall Mark Shirley Zachary Moratto Anthony Colaprete Gregory Neumann David Smith Scott Hensley Barbara Wilson Martin Slade Brian Kennedy Eric Gurrola Leif Harcke 《Space Science Reviews》2012,167(1-4):71-92
The Lunar CRater Observations and Sensing Satellite (LCROSS) mission impacted a spent Centaur rocket stage into a permanently shadowed region near the lunar south pole. The Sheperding Spacecraft (SSC) separated ~9 hours before impact and performed a small braking maneuver in order to observe the Centaur impact plume, looking for evidence of water and other volatiles, before impacting itself. This paper describes the registration of imagery of the LCROSS impact region from the mid- and near-infrared cameras onboard the SSC, as well as from the Goldstone radar. We compare the Centaur impact features, positively identified in the first two, and with a consistent feature in the third, which are interpreted as a 20 m diameter crater surrounded by a 160 m diameter ejecta region. The images are registered to Lunar Reconnaisance Orbiter (LRO) topographical data which allows determination of the impact location. This location is compared with the impact location derived from ground-based tracking and propagation of the spacecraft’s trajectory and with locations derived from two hybrid imagery/trajectory methods. The four methods give a weighted average Centaur impact location of ?84.6796°, ?48.7093°, with a 1σ uncertainty of 115 m along latitude, and 44 m along longitude, just 146 m from the target impact site. Meanwhile, the trajectory-derived SSC impact location is ?84.719°, ?49.61°, with a 1σ uncertainty of 3 m along the Earth vector and 75 m orthogonal to that, 766 m from the target location and 2.803 km south-west of the Centaur impact. We also detail the Centaur impact angle and SSC instrument pointing errors. Six high-level LCROSS mission requirements are shown to be met by wide margins. We hope that these results facilitate further analyses of the LCROSS experiment data and follow-up observations of the impact region. 相似文献
96.
The James Webb Space Telescope (JWST) 总被引:1,自引:0,他引:1
Mark Clampin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(12):1983-1991
The James Webb Space Telescope is a 6.5 m, infrared space telescope designed to be launched in 2013 aboard an Ariane 5. The JWST program is a cooperative program with the Goddard Space Flight Center (GSFC) managing the project for NASA. The prime contractor for JWST is Northrop Grumman Space Technology (NGST). JWST’s international partners are the European Space Agency (ESA) and the Canadian Space Agency (CSA). JWST will address four major science themes: end of the dark ages: first light and reionization; the assembly of galaxies, the birth of stars and protoplanetary systems; and the formation of planetary systems and the origins of life. We discuss the design of the observatory and review recent progress on the JWST program. 相似文献
97.
The Lunar Reconnaissance Orbiter Laser Ranging Investigation 总被引:1,自引:0,他引:1
Maria T. Zuber David E. Smith Ronald S. Zellar Gregory A. Neumann Xiaoli Sun Richard B. Katz Igor Kleyner Adam Matuszeski Jan F. McGarry Melanie N. Ott Luis A. Ramos-Izquierdo David D. Rowlands Mark H. Torrence Thomas W. Zagwodzki 《Space Science Reviews》2010,150(1-4):63-80
The objective of the Lunar Reconnaissance Orbiter (LRO) Laser Ranging (LR) system is to collect precise measurements of range that allow the spacecraft to achieve its requirement for precision orbit determination. The LR will make one-way range measurements via laser pulse time-of-flight from Earth to LRO, and will determine the position of the spacecraft at a sub-meter level with respect to ground stations on Earth and the center of mass of the Moon. Ranging will occur whenever LRO is visible in the line of sight from participating Earth ground tracking stations. The LR consists of two primary components, a flight system and ground system. The flight system consists of a small receiver telescope mounted on the LRO high-gain antenna that captures the uplinked laser signal, and a fiber optic cable that routes the signal to the Lunar Orbiter Laser Altimeter (LOLA) instrument on LRO. The LOLA instrument receiver records the time of the laser signal based on an ultrastable crystal oscillator, and provides the information to the onboard LRO data system for storage and/or transmittal to the ground through the spacecraft radio frequency link. The LR ground system consists of a network of satellite laser ranging stations, a data reception and distribution facility, and the LOLA Science Operations Center. LR measurements will enable the determination of a three-dimensional geodetic grid for the Moon based on the precise seleno-location of ground spots from LOLA. 相似文献
98.
China's opaque politics present particular difficulties for US space policy. Heavily invested in and reliant on space, the US will closely monitor China's burgeoning space program. New space powers, and the increasing use of space generally will further create significant challenges, most particularly to the reliance of states on space for national security. In order to maintain its space capabilities, the US will have to decide between securing this via multilateral and co-operative uses of space, or through trying to maintain a level of dominance over other space actors. While very gradually shifting away from the latter position, Washington's policy choices are complicated by the lack of a clear Chinese space strategy. While the Chinese space program, and its wider intentions, are opaque, tenure of a more cooperative approach course might prove fragile. 相似文献
99.
Mark E. Brender 《Space Policy》1987,3(4):293-297
The images and information available from remote-sensing satellites are potentially valuable to a large market. The news media is part of this market, ready to make major use of new near real-time information offered by the latest technology, which can provide images with resolution of less than 10 metres. A media business consortium (‘Mediasat’) could be created. However, the US Land Remote Sensing Commercialization Act of 1984 places tough licensing restrictions on any US company wanting to put a camera into orbit. The author argues that these restrictions clash with the US Constitutional right of freedom of information, and the press's right to gather information. 相似文献
100.
Mark.J 《世界航空航天博览》2006,(3):54-55
2005年12月,英国国防部的“狂风”F.3维持项目(FSP)达到了一个重大里程碑。在美海军空中作战中心应于加利福尼亚州的穆古角靶场,1架英国皇家空军(RAF)的“狂风”F3防空战斗机首次成功试射了美国雷声公司的AIM-120-C5中距空-空导弹,这也星RAF首次试射该型导弹。 相似文献