排序方式: 共有55条查询结果,搜索用时 7 毫秒
21.
Application of time-variable process noise in terrestrial reference frames determined from VLBI data
Benedikt Soja Richard S. Gross Claudio Abbondanza Toshio M. Chin Michael B. Heflin Jay W. Parker Xiaoping Wu Kyriakos Balidakis Tobias Nilsson Susanne Glaser Maria Karbon Robert Heinkelmann Harald Schuh 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(9):2418-2425
In recent years, Kalman filtering has emerged as a suitable technique to determine terrestrial reference frames (TRFs), a prime example being JTRF2014. The time series approach allows variations of station coordinates that are neither reduced by observational corrections nor considered in the functional model to be taken into account. These variations are primarily due to non-tidal geophysical loading effects that are not reduced according to the current IERS Conventions (2010). It is standard practice that the process noise models applied in Kalman filter TRF solutions are derived from time series of loading displacements and account for station dependent differences. So far, it has been assumed that the parameters of these process noise models are constant over time. However, due to the presence of seasonal and irregular variations, this assumption does not truly reflect reality. In this study, we derive a station coordinate process noise model allowing for such temporal variations. This process noise model and one that is a parameterized version of the former are applied in the computation of TRF solutions based on very long baseline interferometry data. In comparison with a solution based on a constant process noise model, we find that the station coordinates are affected at the millimeter level. 相似文献
22.
23.
Maria T. Zuber Oded Aharonson Jonathan M. Aurnou Andrew F. Cheng Steven A. Hauck II Moritz H. Heimpel Gregory A. Neumann Stanton J. Peale Roger J. Phillips David E. Smith Sean C. Solomon Sabine Stanley 《Space Science Reviews》2007,131(1-4):105-132
Current geophysical knowledge of the planet Mercury is based upon observations from ground-based astronomy and flybys of the
Mariner 10 spacecraft, along with theoretical and computational studies. Mercury has the highest uncompressed density of the
terrestrial planets and by implication has a metallic core with a radius approximately 75% of the planetary radius. Mercury’s
spin rate is stably locked at 1.5 times the orbital mean motion. Capture into this state is the natural result of tidal evolution
if this is the only dissipative process affecting the spin, but the capture probability is enhanced if Mercury’s core were
molten at the time of capture. The discovery of Mercury’s magnetic field by Mariner 10 suggests the possibility that the core
is partially molten to the present, a result that is surprising given the planet’s size and a surface crater density indicative
of early cessation of significant volcanic activity. A present-day liquid outer core within Mercury would require either a
core sulfur content of at least several weight percent or an unusual history of heat loss from the planet’s core and silicate
fraction. A crustal remanent contribution to Mercury’s observed magnetic field cannot be ruled out on the basis of current
knowledge. Measurements from the MESSENGER orbiter, in combination with continued ground-based observations, hold the promise
of setting on a firmer basis our understanding of the structure and evolution of Mercury’s interior and the relationship of
that evolution to the planet’s geological history. 相似文献
24.
Gordon Chin Scott Brylow Marc Foote James Garvin Justin Kasper John Keller Maxim Litvak Igor Mitrofanov David Paige Keith Raney Mark Robinson Anton Sanin David Smith Harlan Spence Paul Spudis S. Alan Stern Maria Zuber 《Space Science Reviews》2007,129(4):391-419
NASA’s Lunar Precursor Robotic Program (LPRP), formulated in response to the President’s Vision for Space Exploration, will
execute a series of robotic missions that will pave the way for eventual permanent human presence on the Moon. The Lunar Reconnaissance
Orbiter (LRO) is first in this series of LPRP missions, and plans to launch in October of 2008 for at least one year of operation.
LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to
assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one
advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine
the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search
for possible polar surface ice in shadowed regions, Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted
narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well
as wide-angle images to characterize polar illumination conditions and to identify potential resources, Lunar Exploration
Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and
will provide space radiation environment measurements that may be useful for future human exploration, Diviner Lunar Radiometer
Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution
to identify cold-traps and potential ice deposits, Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface
in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently
shadowed regions illuminated only by starlight. Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which will investigate
the effect of galactic cosmic rays on tissue-equivalent plastics as a constraint on models of biological response to background
space radiation. The technology demonstration is an advanced radar (mini-RF) that will demonstrate X- and S-band radar imaging
and interferometry using light weight synthetic aperture radar. This paper will give an introduction to each of these instruments
and an overview of their objectives. 相似文献
25.
Peslier Anne H. Schönbächler Maria Busemann Henner Karato Shun-Ichiro 《Space Science Reviews》2017,212(1-2):811-811
Space Science Reviews - Correction to: Space Sci Rev DOI This article has been corrected. Figure 3 was initially published with erroneous axis titles in Fig. 3B and 3D where the $x$ axis should be... 相似文献
26.
Gravity Recovery and Interior Laboratory (GRAIL): Mapping the Lunar Interior from Crust to Core 总被引:1,自引:0,他引:1
Maria T. Zuber David E. Smith David H. Lehman Tom L. Hoffman Sami W. Asmar Michael M. Watkins 《Space Science Reviews》2013,178(1):3-24
The Gravity Recovery and Interior Laboratory (GRAIL) is a spacecraft-to-spacecraft tracking mission that was developed to map the structure of the lunar interior by producing a detailed map of the gravity field. The resulting model of the interior will be used to address outstanding questions regarding the Moon’s thermal evolution, and will be applicable more generally to the evolution of all terrestrial planets. Each GRAIL orbiter contains a Lunar Gravity Ranging System instrument that conducts dual-one-way ranging measurements to measure precisely the relative motion between them, which in turn are used to develop the lunar gravity field map. Each orbiter also carries an Education/Public Outreach payload, Moon Knowledge Acquired by Middle-School Students (MoonKAM), in which middle school students target images of the Moon for subsequent classroom analysis. Subsequent to a successful launch on September 10, 2011, the twin GRAIL orbiters embarked on independent trajectories on a 3.5-month-long cruise to the Moon via the EL-1 Lagrange point. The spacecraft were inserted into polar orbits on December 31, 2011 and January 1, 2012. After a succession of 19 maneuvers the two orbiters settled into precision formation to begin science operations in March 1, 2012 with an average altitude of 55 km. The Primary Mission, which consisted of three 27.3-day mapping cycles, was successfully completed in June 2012. The extended mission will permit a second three-month mapping phase at an average altitude of 23 km. This paper provides an overview of the mission: science objectives and measurements, spacecraft and instruments, mission development and design, and data flow and data products. 相似文献
27.
28.
Lutz Rastätter Maria M. Kuznetsova David G. Sibeck David H. Berrios 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
In this paper we present recent additions to the visualization toolset offered by the Community Coordinated Modeling Center (CCMC). Two suites of visualization tools are available that can address different needs during the analysis of model simulations of the magnetosphere that are provided by the CCMC. The online, server-side visualization allows the user to quickly browse through simulation runs and now can create maps of magnetic field line topology in the magnetosphere. The second tool, SWX, can be used on the client computer after data have been downloaded. With this second tool the user can interact directly with the three-dimensional objects that are being rendered. We present results from a simulation of a Flux Transfer Event that was performed at the CCMC using a magnetohydrodynamic model of the Earth’s magnetosphere with a high resolution grid focused on the dayside magnetosheath and dayside magnetopause. The simulation shows that the FTE that results from localized magnetic reconnection is a complicated three-dimensional structure that requires modern visualization techniques. Visualization techniques that are presented here allow the researcher to fully appreciate the complexity contained in magnetospheric simulation results. 相似文献
29.
On the practical exploitation of perturbative effects in low Earth orbit for space debris mitigation
Volker Schaus Elisa Maria Alessi Giulia Schettino Alessandro Rossi Enrico Stoll 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(7):1979-1991
This paper presents the results of a numerical evaluation of the natural lifetime reduction in low Earth orbit, due to dynamical perturbations. The study considers two values for the area-to-mass ratio, a nominal ratio which resembles a typical value of spacecraft in orbit today, and an enhanced ratio which covers the surface augmentation. The results were obtained with two orbit propagators, one of a semi-analytical nature and the second one using non-averaged equations of motion. The simulations for both propagators were set up similarly to allow comparison. They both use the solar radiation pressure and the secular terms of the geopotential ( and ). The atmospheric drag was turned on and off in both propagators to alternatively study the eccentricity build up and the residual lifetime. The non-averaging case also covers a validation with the full 6?×?6 geopotential. The results confirm the findings in previous publications, that is, the possibility for de-orbiting from altitudes above the residual atmosphere if a solar sail is deployed at the end-of-life, due to the combined effect of solar radiation pressure and the oblateness of the Earth. At near polar inclinations, shadowing effects can be exploited to the same end. The results obtained with the full, non-averaging propagator revealed additional de-orbiting corridors associated with solar radiation pressure which were not found by previous work on space debris mitigation. The results of both tools are compared for specific initial conditions. For nominal values of area-to-mass ratio, instead, it is confirmed that this resonance effect is negligible.The paper then puts the findings in the perspective of the current satellite catalogue. It identifies space missions which are currently close to a resonance corridor and shows the orbit evolution within the resonances with a significantly shorter residual orbital lifetime. The paper finishes with a discussion on the exploitation of these effects with regards to the long-term simulation of the space debris environment and a flux and collision probability comparison. 相似文献
30.
Adriani A Coradini A Filacchione G Lunine JI Bini A Pasqui C Calamai L Colosimo F Dinelli BM Grassi D Magni G Moriconi ML Orosei R 《Astrobiology》2008,8(3):613-622
The Jovian InfraRed Auroral Mapper (JIRAM) has been accepted by NASA for inclusion in the New Frontiers mission "Juno," which will launch in August 2011. JIRAM will explore the dynamics and the chemistry of Jupiter's auroral regions by high-contrast imaging and spectroscopy. It will also analyze jovian hot spots to determine their vertical structure and infer possible mechanisms for their formation. JIRAM will sound the jovian meteorological layer to map moist convection and determine water abundance and other constituents at depths that correspond to several bars pressure. JIRAM is equipped with a single telescope that accommodates both an infrared camera and a spectrometer to facilitate a large observational flexibility in obtaining simultaneous images in the L and M bands with the spectral radiance over the central zone of the images. Moreover, JIRAM will be able to perform spectral imaging of the planet in the 2.0-5.0 microm interval of wavelengths with a spectral resolution better than 10 nm. Instrument design, modes, and observation strategy will be optimized for operations onboard a spinning satellite in polar orbit around Jupiter. The JIRAM heritage comes from Italian-made, visual-infrared imaging spectrometers dedicated to planetary exploration, such as VIMS-V on Cassini, VIRTIS on Rosetta and Venus Express, and VIR-MS on the Dawn mission. 相似文献