全文获取类型
收费全文 | 2665篇 |
免费 | 2篇 |
国内免费 | 19篇 |
专业分类
航空 | 1318篇 |
航天技术 | 1051篇 |
综合类 | 10篇 |
航天 | 307篇 |
出版年
2019年 | 18篇 |
2018年 | 24篇 |
2017年 | 18篇 |
2016年 | 17篇 |
2014年 | 47篇 |
2013年 | 58篇 |
2012年 | 51篇 |
2011年 | 82篇 |
2010年 | 60篇 |
2009年 | 104篇 |
2008年 | 157篇 |
2007年 | 63篇 |
2006年 | 66篇 |
2005年 | 69篇 |
2004年 | 79篇 |
2003年 | 80篇 |
2002年 | 51篇 |
2001年 | 75篇 |
2000年 | 49篇 |
1999年 | 63篇 |
1998年 | 81篇 |
1997年 | 49篇 |
1996年 | 61篇 |
1995年 | 78篇 |
1994年 | 76篇 |
1993年 | 49篇 |
1992年 | 61篇 |
1991年 | 31篇 |
1990年 | 30篇 |
1989年 | 70篇 |
1988年 | 26篇 |
1987年 | 28篇 |
1986年 | 30篇 |
1985年 | 120篇 |
1984年 | 68篇 |
1983年 | 57篇 |
1982年 | 58篇 |
1981年 | 103篇 |
1980年 | 34篇 |
1979年 | 26篇 |
1978年 | 24篇 |
1977年 | 28篇 |
1976年 | 18篇 |
1975年 | 31篇 |
1974年 | 19篇 |
1973年 | 25篇 |
1972年 | 20篇 |
1971年 | 16篇 |
1970年 | 24篇 |
1969年 | 26篇 |
排序方式: 共有2686条查询结果,搜索用时 15 毫秒
61.
J. Watermann P. Stauning H. Lühr P.T. Newell F. Christiansen K. Schlegel 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
We examined some 75 observations from the low-altitude Earth orbiting DMSP, Ørsted and CHAMP satellites which were taken in the region of the nominal cusp. Our objective was to determine whether the actually observed cusp locations as inferred from magnetosheath-like particle precipitation (“particle cusp”) and intense small-scale magnetic field variations (“current cusp”), respectively, were identical and were consistent with the statistically expected latitude of the cusp derived from a huge number of charged particle spectrograms (“statistical cusp”). 相似文献
62.
C. Caroubalos P. Preka-Papadema H. Mavromichalaki X. Moussas A. Papaioannou E. Mitsakou A. Hillaris 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The Athens Neutron Monitor Data Processing (ANMODAP) Center recorded an unusual Forbush decrease with a sharp enhancement of cosmic ray intensity right after the main phase of the Forbush decrease on 16 July 2005, followed by a second decrease within less than 12 h. This exceptional event is neither a ground level enhancement nor a geomagnetic effect in cosmic rays. It rather appears as the effect of a special structure of interplanetary disturbances originating from a group of coronal mass ejections (CMEs) in the 13–14 July 2005 period. The initiation of the CMEs was accompanied by type IV radio bursts and intense solar flares (SFs) on the west solar limb (AR 786); this group of energetic phenomena appears under the label of Solar Extreme Events of July 2005. We study the characteristics of these events using combined data from Earth (the ARTEMIS IV radioheliograph, the Athens Neutron Monitor (ANMODAP)), space (WIND/WAVES) and data archives. We propose an interpretation of the unusual Forbush profile in terms of a magnetic structure and a succession of interplanetary shocks interacting with the magnetosphere. 相似文献
63.
S. Mühlbachler D. Langmayr A.T.Y. Lui N.V. Erkaev I.V. Alexeev P.W. Daly H.K. Biernat 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
This study presents several observations of the Cluster spacecraft on September 24, 2003 around 15:10 UT, which show necessary prerequisites and consequences for the formation of the so-called modified-two-stream instability (MTSI). Theoretical studies suggest that the plasma is MTSI unstable if (1) a relative drift of electrons and ions is present, which exceeds the Alfvèn speed, and (2) this relative drift or current is in the cross-field direction. As consequences of the formation of a MTSI one expects to observe (1) a field-aligned electron beam, (2) heating of the plasma, and (3) an enhancement in the B-wave spectrum at frequencies in the range of the lower-hybrid-frequency (LHF). In this study we use prime parameter data of the CIS and PEACE instruments onboard the Cluster spacecraft to verify the drift velocities of ions and electrons, FGM data to calculate the expected LHF and Alfvèn velocity, and the direction of the current. The B-wave spectrum is recorded by the STAFF instrument of Cluster. Finally, a field aligned beam of electrons is observed by 3D measurements of the IES instrument of the RAPID unit. Observations are verified using a theoretical model showing the build-up of a MTSI under the given circumstances. 相似文献
64.
Corey S. Jamieson Agnes H.H. Chang Ralf I. Kaiser 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Mixtures of molecular nitrogen and methane have been identified in numerous outer Solar Systemices including the icy surfaces of Pluto and Triton. We have simulated the interaction of ionizing radiation in the Solar System by carrying out a radiolysis experiment on a methane – molecular nitrogen ice mixture with energetic electrons. We have identified the hydrogen cyanide molecule as the most prominent carbon–nitrogen-bearing reaction product formed. Upon warming the irradiated sample, we followed for the first time the kinetics and temporal evolution of the underlying acid–base chemistry which resulted in the formation of the cyanide ion from hydrogen cyanide. On the surfaces of Triton and Pluto and on comets in Oort’s cloud this sort of complex chemistry is likely to occur. In particular, hydrogen cyanide can be produced in low temperature environments (Oort cloud comets) and may be converted into cyanide ions once the comets reach the warmer regions of the Solar System. 相似文献
65.
H. Mészárosová H.S. Sawant J.R. Cecatto J. Rybák M. Karlický F.C.R. Fernandes M.C. de Andrade K. Jiřička 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The 22 min long decimetric type IV radio event observed during the decay phase of the June 6, 2000 flare simultaneously by the Brazilian Solar Spectroscope (BSS) and the Ond?ejov radiospectrograph in frequency range 1200–4500 MHz has been analyzed. We have found that the characteristic periods of about 60 s belong to the long-period spectral component of the fast wave trains with a tadpole pattern in their wavelet power spectra. We have detected these trains in the whole frequency range 1200–4500 MHz. The behavior of individual wave trains at lower frequencies is different from that at higher frequencies. These individual wave trains have some common as well as different properties. In this paper, we focus on two examples of wave trains in a loop segment and the main statistical parameters in their wavelet power and global spectra are studied and discussed. 相似文献
66.
Myung-Hee Y. Kim Matthew J. Hayat Alan H. Feiveson Francis A. Cucinotta 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The potential for exposure to large solar particle events (SPEs) with high energy levels is a major concern during interplanetary transfer and extra-vehicular activities (EVAs) on the lunar and Mars surface. Previously, we have used data from the last 5 solar cycles to estimate percentiles of dose to a typical blood-forming organ (BFO) for a hypothetical astronaut in a nominally shielded spacecraft during a 120-d lunar mission. As part of this process, we made use of complete energy spectra for 34 large historical SPEs to calculate what the BFO mGy-Eq dose would have been in the above lunar scenario for each SPE. From these calculated doses, we then developed a prediction model for BFO dose based solely on an assumed value of integrated fluence above 30 MeV (Φ30) for an otherwise unspecified future SPE. In this study, we reasoned that since BFO dose is determined more by protons with higher energies than by those with lower energies, more accurate BFO dose prediction models could be developed using integrated fluence above 60 (Φ60) and above 100 MeV (Φ100) as predictors instead of Φ30. However to calculate the unconditional probability of a BFO dose exceeding a pre-specified limit (“BFO dose risk”), one must also take into account the distribution of the predictor (Φ30,Φ60, or Φ100), as estimated from historical SPEs. But Φ60 and Φ100 have more variability, and less available historical information on which to estimate their distributions over many SPE occurrences, than does Φ30. Therefore, when estimating BFO dose risk there is a tradeoff between increased BFO dose prediction at a given energy threshold and decreased accuracy of models for describing the distribution of that threshold over future SPEs as the threshold increases. Even when taking the second of these two factors into account, we still arrived at the conclusion that overall prediction improves as the energy level threshold increases from 30 to 60 to 100 MeV. These results can be applied to the development of approaches to improve radiation protection of astronauts and the optimization of mission planning for future space missions. 相似文献
67.
K R Sridhar J E Finn M H Kliss 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2000,25(2):249-255
The atmosphere of Mars has many of the ingredients that can be used to support human exploration missions. It can be "mined" and processed to produce oxygen, buffer gas, and water, resulting in significant savings on mission costs. The use of local materials, called ISRU (for in-situ resource utilization), is clearly an essential strategy for a long-term human presence on Mars from the standpoints of self-sufficiency, safety, and cost. Currently a substantial effort is underway by NASA to develop technologies and designs of chemical plants to make propellants from the Martian atmosphere. Consumables for life support, such as oxygen and water, will probably benefit greatly from this ISRU technology development for propellant production. However, the buffer gas needed to dilute oxygen for breathing is not a product of a propellant production plant. The buffer gas needs on each human Mars mission will probably be in the order of metric tons, primarily due to losses during airlock activity. Buffer gas can be separated, compressed, and purified from the Mars atmosphere. This paper discusses the buffer gas needs for a human mission to Mars and consider architectures for the generation of buffer gas including an option that integrates it to the propellant production plant. 相似文献
68.
A mission template for exploration and damage mitigation of potential hazard of Near Earth Asteroids
D. C. Hyland H. A. Altwaijry R. Margulieux J. Doyle J. Sandberg B. Young N. Satak J. Lopez S. Ge X. Bai 《Cosmic Research》2010,48(5):437-442
The Apophis Exploratory and Mitigation Platform (AEMP) concept was developed as a prototype mission to explore and potentially deflect the Near Earth Asteroid (NEA) 99942 Apophis. Deflection of the asteroid from the potential 2036 impact will be achieved using a gravity tractor technique, while a permanent deflection, eliminating future threats, will be imparted using a novel albedo manipulation technique. This mission will serve as an archetypal template for future missions to small NEAs and could be adapted to mitigate the threat of collision with other potential Earth-crossing objects. 相似文献
69.
This remote assistance trial, performed within the framework of the manned space flight Altaïr, was carried out by CADMOS (CNES), with the cooperation of the Sub-directorate of CNES Operational Systems, Medes, LBM of Tours and Christol Consultants. It consisted of supplying the cosmonaut performing the Orthostatism experiment (echograph acquisition) on board the Mir station with realtime assistance by an expert (LBM of Tours) working from the ground on the CADMOS premises. The various steps of the approach followed during the preparation phase are described, as well as the technical means of communication used between the Mir station and CADMOS. 相似文献
70.
H.F. Swift R. Bamford R. Chen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(12):219-234
Dual-layer meteroid shields consisting of sacrificial bumper plates spaced some distance outboard from the vehicle hull are the most effective structures yet conceived for protecting space vehicles from supervelocity meteroid impacts. This paper presents a new analysis for designing dual-layer shields. The analysis is based upon energy and momentum conservation, fundamental electromagnetic radiation physics, and observation of results from extensive experimental impact investigations conducted at relatively low velocities (near 7 km/s). One important conclusion is that most of the kinetic energy of a meteoroid striking a dual-layer shield is expended as radiation at the stagnation zone on the face plate of the underlying structure. The analysis includes systematic procedures to evaluate the response of shield designs for a given impact threat. Similar applications of the analysis can be used to support a mathematically rigorous procedure for optimum shield design. The research described here supported the Halley Intercept Mission Project at the Jet Propulsion Laboratory, C.I.T., under Contract No. NAS 7–100, sponsored by the National Aeronautics and Space Administration. 相似文献