首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5940篇
  免费   8篇
  国内免费   31篇
航空   2742篇
航天技术   2199篇
综合类   20篇
航天   1018篇
  2021年   57篇
  2019年   42篇
  2018年   180篇
  2017年   104篇
  2016年   73篇
  2015年   33篇
  2014年   128篇
  2013年   172篇
  2012年   158篇
  2011年   243篇
  2010年   159篇
  2009年   268篇
  2008年   320篇
  2007年   177篇
  2006年   148篇
  2005年   183篇
  2004年   182篇
  2003年   201篇
  2002年   125篇
  2001年   194篇
  2000年   131篇
  1999年   140篇
  1998年   160篇
  1997年   127篇
  1996年   154篇
  1995年   200篇
  1994年   181篇
  1993年   95篇
  1992年   147篇
  1991年   49篇
  1990年   51篇
  1989年   127篇
  1988年   40篇
  1987年   40篇
  1986年   58篇
  1985年   177篇
  1984年   134篇
  1983年   108篇
  1982年   133篇
  1981年   163篇
  1980年   45篇
  1979年   30篇
  1978年   38篇
  1977年   36篇
  1976年   29篇
  1975年   26篇
  1974年   34篇
  1973年   25篇
  1970年   28篇
  1969年   24篇
排序方式: 共有5979条查询结果,搜索用时 15 毫秒
991.
992.
Cosmic Research - The article presents results of ground calibrations of the FREND neutron telescope installed onboard the TGO spacecraft of the Russian-European ExoMars project. The main goal of...  相似文献   
993.
Based on measurements of ground-based GPS station network, differences of the mid-latitude ionospheric TEC in the east and west sides of North America, South America and Oceania have been analyzed in this paper. Results show that for nearly all seasons from 2001 to 2010 and in both sides of the longitudes with zero declination, there exist systematic differences for the mid-latitude ionospheric TEC in the regions mentioned above and the features of these differences markedly depend upon the local time but less depend upon seasons and the level of solar activity. Theory analysis shows that the longitude variations of both declination and zonal thermospheric winds are one of important factors to cause differences of the mid-latitude ionospheric TEC in both sides of the longitudes with zero declination.  相似文献   
994.
Epocast 50-A1/946 epoxy was primarily developed for joining and repairing of composite aircraft structural components. The objective of the present work is to modify the Epocast epoxy resin by different nanofillers infusion. The used nanofillers include multi-walled carbon nanotubes(MWCNTs), SiC and Al2O3 nanoparticles. The nanofillers with different weight percentages are ultrasonically dispersed in the epoxy resin. The sonication time and amplitude for MWCNTs are reduced compared to Al2O3 and SiC nanoparticles to avoid the damage of MWCNTs during sonication processes. The fabricated neat epoxy and twelve nanocomposite panels were characterized via standard tension and in-plane shear tests. The experimental results show that the nanocomposites materials with 0.5wt% MWCNTs, 1.5wt% SiC and 1.5wt% Al2O3 nanoparticles have the highest improvement in the tensile properties compared to the other nanofiller loading percentages.The improvements in the shear properties of these nanocomposite materials were respectively equal to 5.5%, 4.9%, and 6.3% for shear strengths, and 10.3%, 16.0%, and 8.1% for shear moduli. The optimum nanofiller loading percentages will be used in the following papers concerning their effect on the bonded joints/repairs of carbon fiber reinforced composites.  相似文献   
995.
Numerous non-destructive techniques are being investigated for assuring quality of the adhesive bonds.The research presented here is focused on non-destructive assessment of carbon fibre reinforced polymer(CFRP)parts.The surface condition directly influences the performance of adhesive bonds.The structural joints should ensure safe usage of a structure.However,some modifications of the surface may lead to weak bond that cannot carry the desired load.This is why there is a search for methods of surface assessment before bonding.Moreover,reliable techniques are required to allow to verify the integrity of the adhesive bond after manufacturing or bonded repair.We focus on the laser induced fluorescence(LIF)method for assessing the surface state.The LIF is a noncontact measurement method.In the context of adhesive bond assessment the electromechanical impedance(EMI)method is studied.The EMI uses surface bonded piezoelectric sensors for excitation and sensing.The investigated samples were made of CFRP layers.The samples were treated at elevated temperatures.The influence of the thermal treatment was studied using LIF.The thermal treatment at 220℃could be clearly distinguishedrom the rest of the considered samples.The thermally treated plates were bonded to untreated plate and then they were measured with the EMI method to study the influence of the treatment on the adhesive bond.The changes of EMI spectra were significant for the treatment at 280 ℃ and for some thermally treated samples that were later contaminated with de-icing fluid.  相似文献   
996.
The problem of controlling an all-thruster spacecraft in the coupled translational-rotational motion in presence of actuators fault and/or failure is investigated in this paper. The nonlinear model predictive control approach is used because of its ability to predict the future behavior of the system. The fault/failure of the thrusters changes the mapping between the commanded forces to the thrusters and actual force/torque generated by the thruster system. Thus, the basic six degree-of-freedom kinetic equations are separated from this mapping and a set of neural networks are trained off-line to learn the kinetic equations. Then, two neural networks are attached to these trained networks in order to learn the thruster commands to force/torque mappings on-line. Different off-nominal conditions are modeled so that neural networks can detect any failure and fault, including scale factor and misalignment of thrusters. A simple model of the spacecraft relative motion is used in MPC to decrease the computational burden. However, a precise model by the means of orbit propagation including different types of perturbation is utilized to evaluate the usefulness of the proposed approach in actual conditions. The numerical simulation shows that this method can successfully control the all-thruster spacecraft with ON-OFF thrusters in different combinations of thruster fault and/or failure.  相似文献   
997.
It is a known fact that ionosphere is the largest and the least predictable among the sources of error limiting the reliability and accuracy of Global Navigation Satellite Systems (GNSS) and its regional augmentation systems like Satellite Based Augmentation System (SBAS) in a safety-of-life application. The situation becomes worse in the Equatorial Ionization Anomaly (EIA) region, where the daytime ionization distribution is modified by the fountain effect that develops a crest of electron density at around ±15° to ±20° of the magnetic equator and a trough at the magnetic equator during the local noon hours. Related to this phenomenon is the appearance of ionosphere irregularities and plasma bubbles after local sunset. These may degrade further the quality of service obtained from the GNSS/SBAS system of the said periods. Considering the present operational augmentation systems, the accuracy and integrity of the ionosphere corrections estimate decreases as the level of disturbances increases. In order to provide a correct ionosphere correction to the user of GNSS operating in African EIA region and meet the integrity requirements, a certified ionosphere correction model that accurately characterizes EIA gradient with the full capacity to over-bound the residual error will be needed. An irregularities detector and a decorrelation adaptor are essential in an algorithm usable for African sub-Saharan SBAS operation. The algorithm should be able to cater to the equatorial plasma vertical drifts, diurnal and seasonal variability of the ionosphere electron density and also should take into account the large spatial and temporal gradients in the region. This study presents the assessment of the ionosphere threat model with single and multi-layer algorithm, using modified planar fit and Kriging approaches.  相似文献   
998.
In this paper, we investigate temporal and spatial magnetosphere response to the impact of interplanetary (IP) shocks with different inclinations and speeds on the Earth’s magnetosphere. A data set with more than 500 IP shocks is used to identify positive sudden impulse (SI+) events as expressed by the SuperMAG partial ring current index. The SI+ rise time (RT), defined as the time interval between compression onset and maximum SI+ signature, is obtained for each event. We use RT and a model suggested by Takeuchi et al. (2002) to calculate the geoeffective magnetospheric distance (GMD) in the shock propagation direction as a function of shock impact angle and speed for each event. GMD is a generalization of the geoeffective magnetosphere length (GML) suggested by Takeuchi et al. (2002), defined from the subsolar point along the X line toward the tail. We estimate statistical GMD and GML values which are then reported for the first time. We also show that, similarly to well-known results for RT, the highest correlation coefficient for the GMD and impact angle is found for shocks with high speeds and small impact angles, and the faster and more frontal the shock, the smaller the GMD. This result indicates that the magnetospheric response depends heavily on shock impact angle. With these results, we argue that the prediction and forecasting of space weather events, such as those caused by coronal mass ejections, will not be accurately accomplished if the disturbances’ angles of impact are not considered as an important parameter within model and observation scheme capabilities.  相似文献   
999.
A new methodology for Total Ionizing Dose (TID) tests is proposed. It is based on the employment of an on-chip 90Sr/90Y beta source as alternative to standard methods such as 60Co gamma rays and electrons from LINAC. The use of a compact beta source for TID tests has several advantages. In particular, the irradiation of devices with more than one radiation source results in a better representation of the complex space radiation environment composed of several types, energies and dose-rates. In addition, the use of an easy handling beta source allows the irradiation of electronic devices without any damage to other auxiliary circuit. In this work, 90Sr/90Y beta source dosimetry and related radiation field characteristics are discussed in depth.In order to validate the proposed source for TID tests, a rather complex device such as the “SPC56EL70L5” microcontroller from ST-Microelectronics was exposed to 90Sr/90Y beta rays. The results of this test were compared to that of a previous test of another sample from the same lot with a standard gamma 60Co source. The electronic performances following the two irradiations have been found to be in excellent agreement, by demonstrating therefore the validity of the proposed beta source for TID tests.  相似文献   
1000.
Within the analysis of space geodetic observations, errors of the applied subdaily Earth rotation model can induce systematic effects in different estimated parameters. In this paper, we focus on the impact of the subdaily Universal Time (UT1) model on the celestial pole offsets (CPO) estimated from very long baseline interferometry (VLBI) observations. We provide a mechanism that describes the error propagation from the subdaily UT1 into the daily CPO.In typical 24-h VLBI sessions the observed quasars are well distributed over the sky. But the observations, if looked at from the Earth-fixed frame, are not homogeneously distributed. The amount of observations performed in different terrestrial directions shows an irregularity which can be roughly compared to the case where the observations are collected in only one Earth-fixed direction. This peculiarity leads to artefacts in VLBI solutions, producing a correlation between the subdaily variations in UT1 and the position of the celestial pole. As a result errors in diurnal terms of the subdaily UT1 model are partly compensated by the estimated CPO. We compute for each 24-h VLBI session from 1990 until 2011 the theoretical response of the CPO to an error in the subdaily UT1 by setting up a least-squares adjustment model and using as input the coordinates of the observed quasars and observation epochs. Then real observed response of the estimated CPO derived from the VLBI session solutions is compared to the predicted one. A very good agreement between the CPO values estimated from VLBI and the predicted values was achieved. The presented model of error propagation from the subdaily UT1 into the daily CPO allows to predict and explain the behaviour of CPO estimates of VLBI solutions computed with different subdaily Earth rotation models, what can be helpful for testing the accuracy of different subdaily tidal models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号