首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3701篇
  免费   53篇
  国内免费   28篇
航空   1764篇
航天技术   1325篇
综合类   71篇
航天   622篇
  2021年   35篇
  2018年   51篇
  2017年   61篇
  2016年   34篇
  2015年   35篇
  2014年   75篇
  2013年   101篇
  2012年   85篇
  2011年   166篇
  2010年   116篇
  2009年   142篇
  2008年   208篇
  2007年   115篇
  2006年   110篇
  2005年   117篇
  2004年   81篇
  2003年   116篇
  2002年   90篇
  2001年   106篇
  2000年   88篇
  1999年   102篇
  1998年   107篇
  1997年   101篇
  1996年   88篇
  1995年   104篇
  1994年   107篇
  1993年   64篇
  1992年   75篇
  1991年   39篇
  1990年   44篇
  1989年   74篇
  1988年   39篇
  1987年   32篇
  1986年   34篇
  1985年   113篇
  1984年   80篇
  1983年   80篇
  1982年   59篇
  1981年   103篇
  1980年   25篇
  1979年   27篇
  1978年   33篇
  1977年   25篇
  1976年   23篇
  1975年   39篇
  1974年   20篇
  1972年   33篇
  1971年   25篇
  1969年   22篇
  1967年   23篇
排序方式: 共有3782条查询结果,搜索用时 31 毫秒
131.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
132.
Analysis of UV spectra obtained with the HST, FUSE and other satellites provides a new understanding of the deuterium abundance in the local region of the galactic disk. The wide range of gas-phase D/H measurements obtained outside of the Local Bubble can now be explained as due to different amounts of deuterium depletion on carbonaceous grains. The total D/H ratio including deuterium in the gas and dust phases is at least 23 parts per million of hydrogen, which is providing a challenge to models of galactic chemical evolution. Analysis of HST and ground-based spectra of many lines of sight to stars within the Local Bubble have identified interstellar velocity components that are consistent with more than 15 velocity vectors. We have identified the structures of 15 nearby warm interstellar clouds on the basis of these velocity vectors and common temperatures and depletions. We estimate the distances and masses of these clouds and compare their locations with cold interstellar clouds.  相似文献   
133.
Observational evidence of the 11-year solar cycle (SC) modulation of stratosphere temperatures and winds from the ERA-40 dataset is reviewed, with emphasis on the Northern winter hemisphere. A frequency modulation of sudden warming events is noted, with warmings occurring earlier in solar minimum periods than in solar maximum periods. The observed interaction between the influence of the SC and the quasi biennial oscillation (QBO) on the frequency of sudden warmings is noted as a possible clue for understanding their mechanism of influence. A possible transfer route for the 11-year solar cycle from the equatorial stratopause region to the lowest part of the stratosphere is proposed, via an influence on sudden warming events and the associated induced meridional circulation. SC and QBO composites of zonal wind anomalies show anomalous wind distributions in the subtropical upper stratosphere in early winter. Mechanistic model experiments are reviewed that demonstrate a sensitivity of sudden warmings to small wind anomalies in this region. Various diagnostics from these experiments are shown, including EP fluxes and their divergence and also the synoptic evolution of the polar vortex, in order to understand the mechanism of the influence. Some recent GCM experiments to investigate the SC/QBO interaction are also described. They simulate reasonably well the observed SC/QBO interaction of sudden warming events and appear to support the hypothesis that tropical/subtropical upper stratospheric wind anomalies are an important influence on the timing of sudden warmings.  相似文献   
134.
激光喷丸技术是一种先进的金属塑性成形和表面强化技术,相比于弹丸喷丸,激光喷丸能量密度更大,因而成形能力更强,可以用于成形刚度更大的钣金件,如飞机整体壁板,在航空航天领域有广泛的应用前景。构建一种多尺度激光喷丸成形模拟方法,包括激光喷丸诱导应力场的计算方法和基于直接应力法的工件成形曲率的预测方法。预测结果通过2024–T351铝合金块状试件和典型截面单筋件激光喷丸试验得到了验证,试验结果与模拟结果吻合较好,表明此模拟方法有效可行。  相似文献   
135.
In a recent paper, general expressions were derived for the density and cumulative probability functions of the amplitude of a linear matched-filter output given a nonfluctuating target in a clutter-limited environment. These expressions were based on the clutter amplitude density function. The results are extended to calculate the cumulative probability function of the output of a linear matched filter used to detect a chi-square fluctuating target in a clutter-limited environment. The resulting method is applied to a common radar clutter model, and experimental sonar data.  相似文献   
136.
We report initial measurements from the ULECA sensor of the Max-Planck-Institut/University of Maryland experiment on ISEE-1. ULECA is an electrostatic deflection — total energy sensor consisting of a collimator, deflection analyzer and an array of solid state detectors. The position of a given detector, which determines the energy per charge of an incident particle, together with the measured energy determine the particle's charge state. We find that a rich variety of phenomena are operative in the transthermal energy regime (10 keV/Q to 100 keV/Q) covered by ULECA. Specifically, we present observations of locally accelerated protons, alpha particles, and heavier ions in the magnetosheath and upstream of the Earth's bow shock. Preliminary analysis indicates that the behavior of these locally accelerated particles is most similar at the same energy per charge.  相似文献   
137.
The magnetotail and substorms   总被引:5,自引:0,他引:5  
The tail plays a very active and important role in substorms. Magnetic flux eroded from the dayside magnetosphere is stored here. As more and more flux is transported to the magnetotail and stored, the boundary of the tail flares more, the field strength in the tail increases, and the currents strengthen and move closer to the Earth. Further, the plasma sheet thins and the magnetic flux crossing the neutral sheet lessens. At the onset of the expansion phase, the stored magnetic flux is returned from the tail and energy is deposited in the magnetosphere and ionosphere. During the expansion phase of isolated substorms, the flaring angle and the lobe field strength decrease, the plasma sheet thickens and more magnetic flux crosses the neutral sheet.In this review, we discuss the experimental evidence for these processes and present a phenomenological or qualitative model of the substorm sequence. In this model, the flux transport is driven by the merging of the magnetospheric and interplanetary magnetic fields. During the growth phase of substorms the merging rate on the dayside magnetosphere exceeds the reconnection rate in the neutral sheet. In order to remove the oversupply of magnetic flux in the tail, a neutral point forms in the near earth portion of the tail. If the new reconnection rate exceeds the dayside merging rate, then an isolated substorm results. However, a situation can occur in which dayside merging and tail reconnection are in equilibrium. The observed polar cap electric field and its correlation with the interplanetary magnetic field is found to be in accord with open magnetospheric models.  相似文献   
138.
Jurewicz  A.J.G.  Burnett  D.S.  Wiens  R.C.  Friedmann  T.A.  Hays  C.C.  Hohlfelder  R.J.  Nishiizumi  K.  Stone  J.A.  Woolum  D.S.  Becker  R.  Butterworth  A.L.  Campbell  A.J.  Ebihara  M.  Franchi  I.A.  Heber  V.  Hohenberg  C.M.  Humayun  M.  McKeegan  K.D.  McNamara  K.  Meshik  A.  Pepin  R.O.  Schlutter  D.  Wieler  R. 《Space Science Reviews》2003,105(3-4):535-560
Genesis (NASA Discovery Mission #5) is a sample return mission. Collectors comprised of ultra-high purity materials will be exposed to the solar wind and then returned to Earth for laboratory analysis. There is a suite of fifteen types of ultra-pure materials distributed among several locations. Most of the materials are mounted on deployable panels (‘collector arrays’), with some as targets in the focal spot of an electrostatic mirror (the ‘concentrator’). Other materials are strategically placed on the spacecraft as additional targets of opportunity to maximize the area for solar-wind collection. Most of the collection area consists of hexagonal collectors in the arrays; approximately half are silicon, the rest are for solar-wind components not retained and/or not easily measured in silicon. There are a variety of materials both in collector arrays and elsewhere targeted for the analyses of specific solar-wind components. Engineering and science factors drove the selection process. Engineering required testing of physical properties such as the ability to withstand shaking on launch and thermal cycling during deployment. Science constraints included bulk purity, surface and interface cleanliness, retentiveness with respect to individual solar-wind components, and availability. A detailed report of material parameters planned as a resource for choosing materials for study will be published on a Genesis website, and will be updated as additional information is obtained. Some material is already linked to the Genesis plasma data website (genesis.lanl.gov). Genesis should provide a reservoir of materials for allocation to the scientific community throughout the 21st Century. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
139.
激波风洞重模型气动力试验研究   总被引:2,自引:0,他引:2  
在激波风洞上进行气动力试验时,风洞启动时巨大的冲击载荷使模型-天平受到充分的激励,从而形成惯性干扰力,并与真实气动力混杂在一起,甚至完全覆盖气动力,降低了试验精准度,使得试验模型的质量受到极大的限制。本文介绍了CARDC-dia.2米激波风洞进行大、重模型的压电天平气动力试验研究情况,包括天平设计、天平校准、惯性补偿和风洞试验等几个方面。研究结果表明:气动力试验模型质量可从过去的500g增加到8kg,模型长度可达1m。从而提高了激波风洞测力试验能力,能满足高超声速飞行器试验的需求。  相似文献   
140.
In this paper we present a family of track-before-detect (TBD) procedures for early detection of moving targets from airborne radars. Upon a sectorization of the coverage area, the received echoes are jointly processed in the azimuth-range-Doppler domain and in the time domain through a Viterbi-like algorithm that exploits the physically admissible target transitions between successive illuminations, in order to collect all of the energy back-scattered during the time on target (TOT). A reduced-complexity implementation is derived assuming, at the design stage, that the target does not change resolution cell during the TOT in each scan. The constant false alarm rate (CFAR) constraint is also englobed in the proposed procedures as well as the possibility of working with quantized data. Simulation results show that the proposed algorithms have good detection and tracking capabilities even for high target velocities and low quantization rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号