首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2355篇
  免费   4篇
  国内免费   4篇
航空   1247篇
航天技术   848篇
综合类   13篇
航天   255篇
  2018年   26篇
  2017年   22篇
  2014年   27篇
  2013年   50篇
  2012年   30篇
  2011年   66篇
  2010年   54篇
  2009年   60篇
  2008年   127篇
  2007年   41篇
  2006年   33篇
  2005年   50篇
  2004年   75篇
  2003年   79篇
  2002年   40篇
  2001年   55篇
  2000年   52篇
  1999年   29篇
  1998年   77篇
  1997年   56篇
  1996年   62篇
  1995年   69篇
  1994年   86篇
  1993年   51篇
  1992年   69篇
  1991年   29篇
  1990年   34篇
  1989年   71篇
  1988年   24篇
  1987年   31篇
  1986年   50篇
  1985年   89篇
  1984年   55篇
  1983年   60篇
  1982年   57篇
  1981年   68篇
  1980年   34篇
  1979年   27篇
  1978年   25篇
  1977年   24篇
  1975年   24篇
  1974年   25篇
  1973年   24篇
  1972年   21篇
  1971年   31篇
  1970年   19篇
  1969年   25篇
  1968年   21篇
  1967年   22篇
  1966年   19篇
排序方式: 共有2363条查询结果,搜索用时 15 毫秒
991.
Radar measurement and resolution performance, as well as target detection in clutter, depend largely on the transmitted waveform. This explains the sizable effort that has gone into studies of radar waveforms, including attempts at the synthesis of optimum waveforms. This paper shows that, despite the unlimited variety of radar signals, waveform selection is a straightforward process. There are only four classes of waveforms, each with distinct resolution properties. When the target environment is analyzed for a particular application, it is rather evident which of these classes will fit the situation best. Choice of the specific waveform within the selected class then is merely a matter of practical implementation. Although the facts used in developing the unified theory of this paper are not new, it is demonstrated that these facts can be combined into an extremely simple theory of waveform design. Much of today's work is guided by past approaches to a particular problem, and when a design is completed there may be a question as to how close to the optimum it is. The theory presented here permits a systematic approach to waveform selection, with the important benefit that the designer knows exactly where and how much he may have deviated from the best design, and why this was done.  相似文献   
992.
993.
Monopulse DOA estimation of two unresolved Rayleigh targets   总被引:3,自引:0,他引:3  
This paper provides for new approaches to the processing of unresolved measurements as two direction-of-arrival (DOA) measurements for tracking closely spaced targets rather than the conventional single DOA measurement of the centroid. The measurements of the two-closely spaced targets are merged when the target echoes are not resolved in angle, range, or radial velocity (i.e., Doppler processing). The conditional Cramer Rao lower bound (CRLB) is developed for the DOA estimation of two unresolved Rayleigh targets using a standard monopulse radar. Then the modified CRLB is used to give insight into the boresight pointing for monopulse DOA estimation of two unresolved targets. Monopulse processing is considered for DOA estimation of two unresolved Rayleigh targets with known or estimated relative radar cross section (RCS). The performance of the DOA estimator is studied via Monte Carlo simulations and compared with the modified CRLB  相似文献   
994.
The Plasma Wave Instrument on the Polar spacecraft is designed to provide measurements of plasma waves in the Earth's polar regions over the frequency range from 0.1 Hz to 800 kHz. Three orthogonal electric dipole antennas are used to detect electric fields, two in the spin plane and one aligned along the spacecraft spin axis. A magnetic loop antenna and a triaxial magnetic search coil antenna are used to detect magnetic fields. Signals from these antennas are processed by five receiver systems: a wideband receiver, a high-frequency waveform receiver, a low-frequency waveform receiver, two multichannel analyzers; and a pair of sweep frequency receivers. Compared to previous plasma wave instruments, the Polar plasma wave instrument has several new capabilities. These include (1) an expanded frequency range to improve coverage of both low- and high-frequency wave phenomena, (2) the ability to simultaneously capture signals from six orthogonal electric and magnetic field sensors, and (3) a digital wideband receiver with up to 8-bit resolution and sample rates as high as 249k samples s–1.  相似文献   
995.
The Toroidal Imaging Mass-Angle Spectrograph (TIMAS) for the polar mission   总被引:1,自引:0,他引:1  
The science objectives of the Toroidal Imaging Mass-Angle Spectrograph (TIMAS) are to investigate the transfer of solar wind energy and momentum to the magnetosphere, the interaction between the magnetosphere and the ionosphere, the transport processes that distribute plasma and energy throughout the magnetosphere, and the interactions that occur as plasma of different origins and histories mix and interact. In order to meet these objectives the TIMAS instrument measures virtually the full three-dimensional velocity distribution functions of all major magnetospheric ion species with one-half spin period time resolution. The TIMAS is a first-order double focusing (angle and energy), imaging spectrograph that simultaneously measures all mass per charge components from 1 AMU e–1 to greater than 32 AMU e–1 over a nearly 360° by 10° instantaneous field-of-view. Mass per charge is dispersed radially on an annular microchannel plate detector and the azimuthal position on the detector is a map of the instantaneous 360° field of view. With the rotation of the spacecraft, the TIMAS sweeps out very nearly a 4 solid angle image in a half spin period. The energy per charge range from 15 eV e–1 to 32 keV e–1 is covered in 28 non-contiguous steps spaced approximately logarithmically with adjacent steps separated by about 30%. Each energy step is sampled for approximately 20 ms;14 step (odd or even) energy sweeps are completed 16 times per spin. In order to handle the large volume of data within the telemetry limitations the distributions are compressed to varying degrees in angle and energy, log-count compressed and then further compressed by a lossless technique. This data processing task is supported by two SA3300 microprocessors. The voltages (up to 5 kV) for the tandem toroidal electrostatic analyzers and preacceleration sections are supplied from fixed high voltage supplies using optically controlled series-shunt regulators.  相似文献   
996.
A suite of three optical instruments has been developed to observe Comet 9P/Tempel 1, the impact of a dedicated impactor spacecraft, and the resulting crater formation for the Deep Impact mission. The high-resolution instrument (HRI) consists of an f/35 telescope with 10.5 m focal length, and a combined filtered CCD camera and IR spectrometer. The medium-resolution instrument (MRI) consists of an f/17.5 telescope with a 2.1 m focal length feeding a filtered CCD camera. The HRI and MRI are mounted on an instrument platform on the flyby spacecraft, along with the spacecraft star trackers and inertial reference unit. The third instrument is a simple unfiltered CCD camera with the same telescope as MRI, mounted within the impactor spacecraft. All three instruments use a Fairchild split-frame-transfer CCD with 1,024× 1,024 active pixels. The IR spectrometer is a two-prism (CaF2 and ZnSe) imaging spectrometer imaged on a Rockwell HAWAII-1R HgCdTe MWIR array. The CCDs and IR FPA are read out and digitized to 14 bits by a set of dedicated instrument electronics, one set per instrument. Each electronics box is controlled by a radiation-hard TSC695F microprocessor. Software running on the microprocessor executes imaging commands from a sequence engine on the spacecraft. Commands and telemetry are transmitted via a MIL-STD-1553 interface, while image data are transmitted to the spacecraft via a low-voltage differential signaling (LVDS) interface standard. The instruments are used as the science instruments and are used for the optical navigation of both spacecraft. This paper presents an overview of the instrument suite designs, functionality, calibration and operational considerations.  相似文献   
997.
采用纳米陶瓷粒子团聚体粉末等离子喷涂制备纳米陶瓷热障涂层,研究了纳米陶瓷热障涂层的组织和性能.试验表明,采用纳米结构的陶瓷涂层有利于增加热障涂层的高温使用寿命.  相似文献   
998.
Blanc  M.  Bolton  S.  Bradley  J.  Burton  M.  Cravens  T.E.  Dandouras  I.  Dougherty  M.K.  Festou  M.C.  Feynman  J.  Johnson  R.E.  Gombosi  T.G.  Kurth  W.S.  Liewer  P.C.  Mauk  B.H.  Maurice  S.  Mitchell  D.  Neubauer  F.M.  Richardson  J.D.  Shemansky  D.E.  Sittler  E.C.  Tsurutani  B.T.  Zarka  Ph.  Esposito  L.W.  Grün  E.  Gurnett  D.A.  Kliore  A.J.  Krimigis  S.M.  Southwood  D.  Waite  J.H.  Young  D.T. 《Space Science Reviews》2002,104(1-4):253-346
Magnetospheric and plasma science studies at Saturn offer a unique opportunity to explore in-depth two types of magnetospheres. These are an ‘induced’ magnetosphere generated by the interaction of Titan with the surrounding plasma flow and Saturn's ‘intrinsic’ magnetosphere, the magnetic cavity Saturn's planetary magnetic field creates inside the solar wind flow. These two objects will be explored using the most advanced and diverse package of instruments for the analysis of plasmas, energetic particles and fields ever flown to a planet. These instruments will make it possible to address and solve a series of key scientific questions concerning the interaction of these two magnetospheres with their environment. The flow of magnetospheric plasma around the obstacle, caused by Titan's atmosphere/ionosphere, produces an elongated cavity and wake, which we call an ‘induced magnetosphere’. The Mach number characteristics of this interaction make it unique in the solar system. We first describe Titan's ionosphere, which is the obstacle to the external plasma flow. We then study Titan's induced magnetosphere, its structure, dynamics and variability, and discuss the possible existence of a small intrinsic magnetic field of Titan. Saturn's magnetosphere, which is dynamically and chemically coupled to all other components of Saturn's environment in addition to Titan, is then described. We start with a summary of the morphology of magnetospheric plasma and fields. Then we discuss what we know of the magnetospheric interactions in each region. Beginning with the innermost regions and moving outwards, we first describe the region of the main rings and their connection to the low-latitude ionosphere. Next the icy satellites, which develop specific magnetospheric interactions, are imbedded in a relatively dense neutral gas cloud which also overlaps the spatial extent of the diffuse E ring. This region constitutes a very interesting case of direct and mutual coupling between dust, neutral gas and plasma populations. Beyond about twelve Saturn radii is the outer magnetosphere, where the dynamics is dominated by its coupling with the solar wind and a large hydrogen torus. It is a region of intense coupling between the magnetosphere and Saturn's upper atmosphere, and the source of Saturn's auroral emissions, including the kilometric radiation. For each of these regions we identify the key scientific questions and propose an investigation strategy to address them. Finally, we show how the unique characteristics of the CASSINI spacecraft, instruments and mission profile make it possible to address, and hopefully solve, many of these questions. While the CASSINI orbital tour gives access to most, if not all, of the regions that need to be explored, the unique capabilities of the MAPS instrument suite make it possible to define an efficient strategy in which in situ measurements and remote sensing observations complement each other. Saturn's magnetosphere will be extensively studied from the microphysical to the global scale over the four years of the mission. All phases present in this unique environment — extended solid surfaces, dust and gas clouds, plasma and energetic particles — are coupled in an intricate way, very much as they are in planetary formation environments. This is one of the most interesting aspects of Magnetospheric and Plasma Science studies at Saturn. It provides us with a unique opportunity to conduct an in situ investigation of a dynamical system that is in some ways analogous to the dusty plasma environments in which planetary systems form. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
999.
Optimal polarimetric processing for enhanced target detection   总被引:3,自引:0,他引:3  
The results of a study of several polarimetric target detection algorithms are summarized. The algorithms were tested using real target-in-clutter data collected by the Lincoln Laboratory 35 GHz synthetic aperture radar (SAR) sensor. Fully polarimetric measurements (HH, HV, VV) are processed into intensity imagery using adaptive and nonadaptive polarimetric whitening filters (PWFs). Then a two-parameter constant false alarm rate (CFAR) detector is run over the imagery to detect the targets. Nonadaptive PWF processed imagery is shown to provide better protection performance than either adaptive PWF processed imagery or single-polarimetric-channel HH imagery. In addition, nonadaptive PWF processed imagery is shown to be visually clearer than adaptive processed imagery  相似文献   
1000.
The Electron Drift Instrument (EDI) measures the drift of a weak beam of test electrons that, when emitted in certain directions, return to the spacecraft after one or more gyrations. This drift is related to the electric field and the gradient in the magnetic field, and these quantities can, by use of different electron energies, be determined separately. As a by-product, the magnetic field strength is also measured. The present paper describes the scientific objectives, the experimental method, and the technical realization of the various elements of the instrument.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号