首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   1篇
  国内免费   3篇
航空   122篇
航天技术   55篇
综合类   2篇
航天   108篇
  2021年   7篇
  2020年   4篇
  2019年   5篇
  2018年   6篇
  2017年   6篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   13篇
  2012年   12篇
  2011年   26篇
  2010年   10篇
  2009年   19篇
  2008年   10篇
  2007年   17篇
  2006年   7篇
  2005年   12篇
  2004年   10篇
  2003年   10篇
  2002年   7篇
  2001年   5篇
  2000年   4篇
  1998年   9篇
  1997年   1篇
  1996年   6篇
  1995年   3篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1969年   2篇
  1968年   7篇
  1967年   10篇
  1966年   6篇
排序方式: 共有287条查询结果,搜索用时 312 毫秒
251.
Variable emissivity electrochromics have been proposed as an enabling technology for integrating a radiator capability into a space suit in order to augment or replace the traditional means of heat rejection achieved via water sublimation. Thermal analysis was performed to establish design trade spaces and to provide operational guidelines and performance specifications for electrochromic technology development. Based on using the available surface area of an entire space suit as a radiator and the projected infrared emissivity modulation capability of state-of-the-art electrochromic material, the proposed application for space suit heat rejection suggests the potential exists to reduce or eliminate reliance on water consumption for thermal control within a defined range of metabolic and environmental boundary conditions.  相似文献   
252.
A review of global satellite-derived snow products   总被引:1,自引:0,他引:1  
Snow cover over the Northern Hemisphere plays a crucial role in the Earth’s hydrology and surface energy balance, and modulates feedbacks that control variations of global climate. While many of these variations are associated with exchanges of energy and mass between the land surface and the atmosphere, other expected changes are likely to propagate downstream and affect oceanic processes in coastal zones. For example, a large component of the freshwater flux into the Arctic Ocean comes from snow melt. The timing and magnitude of this flux affects biological and thermodynamic processes in the Arctic Ocean, and potentially across the globe through their impact on North Atlantic Deep Water formation.  相似文献   
253.
254.
A practical technique for characterizing non-Gaussian radar clutter is specified and demonstrated using Over The Horizon Radar (OTHR) data, as an example. The technique employs maximum likelihood to fit the probability density of the clutter amplitude returns to a mixture of two Rayleigh probability densities instead of the single Rayleigh density typically used for Gaussian clutter. This model for non-Gaussian clutter is fully specified for any set of clutter amplitudes by a log likelihood, two Rayleigh parameters, and a mixing coefficient. A 3D plot of these values yields an easily-visualized clutter characterization, as is illustrated using OTHR data. This technique is a demonstration of clutter characterization using OTHR data, but the method can be applied to characterize other types of clutter data.  相似文献   
255.
Laboratory measurements are presented to study the effects of the physical properties of regolith on planetary soft X-ray fluorescence spectroscopy. Two laboratory setups are used to independently measure these regolith effects using lunar regolith analog samples with three different particle-size ranges. Discussion is given on the data analysis. Some of the data may be valid only for qualitative conclusions. Analytical modelling is used to separate the effects expected for a plane-parallel and homogeneous medium from those of measured regolith analogs. The surface roughness and porosity of the regolith are observed to induce an enhancement of the higher-energy part of the spectrum as a function of the incidence angle. The enhancement is larger for rougher surfaces. A brief discussion is given on the relevance of this study for future planetary missions carrying soft X-ray spectrometers.  相似文献   
256.
257.
Late-type secondaries in Algol binaries are rapidly rotating convective stars and thus should be chromospherically active (CA). They are examined with respect to observational manifestations which characterize already known CA stars: Ca II H and K emission cores, photometric variability attributable to starspots, soft x-ray emission, non-thermal radio emission, ultraviolet and infrared excess, and alternating period changes. The conclusion is that they can be regarded as another class of CA stars. In most respects they are literally indistinguishable from other CA stars. Ca II H and K emission cores are observed in the lobe-filling component of six semi-detached binaries: U Cep, RT Lac, RV Lib, AR Mon, S Vel, HR 5110. Alternating period changes are shown to occur only in Algols containing a late-type (convective) star. It is proposed, therefore, that the Matese-Whitmire mechanism explains these changes. Specifically, the interval from one increase (or decrease) to the next can be equated with the star's magnetic cycle. Cycle lengths for 31 stars, derived in this way, range between 7 years and 109 years, with a median of 50 years.  相似文献   
258.
259.
The Magnetometer (MAG) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission is a low-noise, tri-axial, fluxgate instrument with its sensor mounted on a 3.6-m-long boom. The boom was deployed on March 8, 2005. The primary MAG science objectives are to determine the structure of Mercury’s intrinsic magnetic field and infer its origin. Mariner 10 observations indicate a planetary moment in the range 170 to 350 nT R M3 (where R M is Mercury’s mean radius). The uncertainties in the dipole moment are associated with the Mariner 10 trajectory and variability of the measured field. By orbiting Mercury, MESSENGER will significantly improve the determination of dipole and higher-order moments. The latter are essential to understanding the thermal history of the planet. MAG has a coarse range, ±51,300 nT full scale (1.6-nT resolution), for pre-flight testing, and a fine range, ±1,530 nT full scale (0.047-nT resolution), for Mercury operation. A magnetic cleanliness program was followed to minimize variable and static spacecraft-generated fields at the sensor. Observations during and after boom deployment indicate that the fixed residual field is less than a few nT at the location of the sensor, and initial observations indicate that the variable field is below 0.05 nT at least above about 3 Hz. Analog signals from the three axes are low-pass filtered (10-Hz cutoff) and sampled simultaneously by three 20-bit analog-to-digital converters every 50 ms. To accommodate variable telemetry rates, MAG provides 11 output rates from 0.01 s−1 to 20 s−1. Continuous measurement of fluctuations is provided with a digital 1–10 Hz bandpass filter. This fluctuation level is used to trigger high-time-resolution sampling in eight-minute segments to record events of interest when continuous high-rate sampling is not possible. The MAG instrument will provide accurate characterization of the intrinsic planetary field, magnetospheric structure, and dynamics of Mercury’s solar wind interaction.  相似文献   
260.
Space education is a discipline that has evolved at an unprecedented rate over the past 25 years. Although program proceedings, research literature, and historical documentation have captured fragmented pieces of information about student space experiments, the field lacks a valid comprehensive study that measures the educational impact of sounding rockets, Skylab, Ariane, AMSAT, and Space Shuttle. The lack of this information is a problem for space educators worldwide which led to a national study with classroom teachers. Student flown experiments continue to offer a unique experiential approach to teach students thinking and reasoning skills that are imperative in the current international competitive environment in which they live and will work. Understanding the history as well as the current status and educational spin-offs of these experimental programs strengthens the teaching capacity of educators throughout the world to develop problem solving skills and various higher mental processes in the schools. These skills and processes enable students to use their knowledge more effectively and efficiently long after they leave the classroom. This paper focuses on student space experiments as a means of motivating students to meet this educational goal successfully.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号