首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
航空   22篇
  2012年   1篇
  2008年   1篇
  2006年   1篇
  2003年   1篇
  2001年   5篇
  1999年   4篇
  1995年   6篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有22条查询结果,搜索用时 31 毫秒
11.
The mechanism by which ions are accelerated near the Earth's bow shock and near shocks propagating outward from the Sun in response to solar activity appears to be essentially the same. For both types of shock the solar wind thermal distribution acts as a seed population. Leaked magnetospheric ions and resident flare ions are additional seed populations for the bow shock and outward propagating shocks respectively. The acceleration of solar wind ions at these shocks begins with either the reflection of ions off the shock or leakage of shocked plasma back through the shock. Interaction with a disruption wave field self-generated by these backstreaming ions is responsible for the remainder of the acceleration at the bow shock. Both the disruption wave field and the ambient interplanetary wave field play important roles in accelerating ions at outward propagating shocks, but on different time scales. The geometry of the shock and the duration of field line connection to the shock play decisive roles in determining what is observed.  相似文献   
12.
Nine coronal mass ejections (CMEs) have been detected in the solar wind by the Ulysses plasma experiment between 31° and 61° South. One of these events, which was also a magnetic cloud, was directly associated with an event observed by the soft X-ray telescope on Yohkoh in which large magnetic loops formed in the solar corona directly beneath Ulysses. This association suggests that the flux rope topology of the magnetic cloud resulted from reconnection between the legs of neighboring magnetic loops within the rising CME. The average CME speed (740 km s–1) at these latitudes was comparable to that of the normal solar wind there and is much greater than average CME speeds observed either in the solar wind in the ecliptic plane or in the corona close to the Sun. We suggest that the same basic acceleration process applies to both slow CMEs and the normal solar wind at any latitude.  相似文献   
13.
The IMPACT (In situ Measurements of Particles And CME Transients) investigation on the STEREO mission was designed and developed to provide multipoint solar wind and suprathermal electron, interplanetary magnetic field, and solar energetic particle information required to unravel the nature of coronal mass ejections and their heliospheric consequences. IMPACT consists of seven individual sensors which are packaged into a boom suite, and a SEP suite. This review summarizes the science objectives of IMPACT, the instruments that comprise the IMPACT investigation, the accommodation of IMPACT on the STEREO twin spacecraft, and the overall data products that will flow from the IMPACT measurements. Accompanying papers in this volume of Space Science Reviews highlight the individual sensor technical details and capabilities, STEREO project plans for the use of IMPACT data, and modeling activities for IMPACT (and other STEREO) data interpretation.  相似文献   
14.
The early ISEE orbits provided the opportunity to study the magnetopause and its environs only a few Earth radii above the subsolar point. Measurements of complete two-dimensional ion and electron distributions every 3 or 12 s, and of three-dimensional distributions every 12 or 48 s by the LASL/MPI instrumentation on both spacecraft allow a detailed study of the plasma properties with unprecedented temporal resolution. This paper presents observations obtained during four successive inbound orbits in November 1977, containing a total of 9 magnetopause crossings, which occurred under widely differing orientations of the external magnetic field. The main findings are: (1) The magnetosheath flow near the magnetopause is characterized by large fluctuations, which often appear to be temporal in nature. (2) Between 0.1 and 0.3R E outside the magnetopause, the plasma density and pressure often start to gradually decrease as the magnetopause is approached, in conjunction with an increase in magnetic field strength. These observations are in accordance with the formation of a depletion layer due to the compression of magnetic flux tubes. (3) In cases where the magnetopause can be well resolved, it exhibits fluctuations in density, and especially pressure and bulk velocity around average magnetosheath values. The pressure fluctuations are anticorrelated with simultaneous magnetic field pressure changes. (4) In ope case the magnetopause is characterized by substantially displaced electron and proton boundaries and a proton flow direction change from upwards along the magnetopause to a direction tranverse to the geomagnetic field. These features are in agreement with a model of the magnetopause described by Parker. (5) The character of the magnetopause sometimes varies strongly between ISEE-1 and -2 crossings which occur 1 min apart. At times this is clearly the result of highly non-uniform motions. There are also cases where there is very good agreement between the structures observed by the two satellites. (6) In three of the nine crossings no boundary layer was present adjacent to the magnetopause. More remarkably, two of the three occurred while the external magnetic field had a substantial southward component, in clear contradiction to expectations from current reconnection models. (7) The only thick (low-latitude) boundary layer (LLBL) observed was characterized by sharp changes at its inner and outer edges. This profile is difficult to reconcile with local plasma entry by either direct influx or diffusion. (8) During the crossings which showed no boundary layer adjacent to the magnetopause, magnetosheath-like plasma was encountered sometime later. Possible explanations include the sudden formation of a boundary layer at this location right at the time of the encounter, and a crossing of an inclusion of magnetosheath plasma within the magnetosphere. (9) The flow in the LLBL is highly variable, observed directions include flow towards and away from the subsolar point, along the geomagnetic field and across it, tangential and normal to the magnetopause. Some of these features clearly are nonstationary. The scale size over which the flow directions change exceeds the separation distance (several hundred km) of the two spacecraft.  相似文献   
15.
Gosling  J.T.  Forsyth  R.J. 《Space Science Reviews》2001,97(1-4):98-98
We have identified 20 coronal mass ejections, or CMEs, in the solar wind in the Ulysses data obtained between S30° and S75° during the second polar orbit. Unlike CME-driven disturbances observed at high latitudes during Ulysses’ first polar orbit, these disturbances had plasma and magnetic field characteristics similar to those observed in the ecliptic plane near 1 AU when one allows for evolution with heliocentric distance. Here we provide a brief overview of CME observations at high latitudes both close to and far from the Sun, with emphasis on the recent Ulysses measurements on the rising portion of solar cycle 23. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
16.
We report observations of radial and latitudinal gradients of Ulysses plasma parameters. The solar wind velocity increased rapidly with latitude from 0° to 35°, then remained approximately constant at higher latitudes. Solar wind density decreased rapidly from 0° to 35° of latitude, and also was approximately constant beyond that latitude. The mass flux similarly decreased away from the equator (but less than the density), whereas the momentum flux was relatively constant. The radial gradient of the entropy at high latitude indicated a value for the polytrope index of about 1.72 (close to adiabatic); the in-ecliptic estimates of radial gradients for temperature and entropy may be biased by temporal variation. A striking increase in the alpha particle-proton velocity difference with latitude is found.  相似文献   
17.
Barraclough  B.L.  Dors  E.E.  Abeyta  R.A.  Alexander  J.F.  Ameduri  F.P.  Baldonado  J.R.  Bame  S.J.  Casey  P.J.  Dirks  G.  Everett  D.T.  Gosling  J.T.  Grace  K.M.  Guerrero  D.R.  Kolar  J.D.  Kroesche  J.L.  Lockhart  W.L.  McComas  D.J.  Mietz  D.E.  Roese  J.  Sanders  J.  Steinberg  J.T.  Tokar  R.L.  Urdiales  C.  Wiens  R.C. 《Space Science Reviews》2003,105(3-4):627-660
The Genesis Ion Monitor (GIM) and the Genesis Electron Monitor (GEM) provide 3-dimensional plasma measurements of the solar wind for the Genesis mission. These measurements are used onboard to determine the type of plasma that is flowing past the spacecraft and to configure the solar wind sample collection subsystems in real-time. Both GIM and GEM employ spherical-section electrostatic analyzers followed by channel electron multiplier (CEM) arrays for detection and angle and energy/charge analysis of incident ions and electrons. GIM is of a new design specific to Genesis mission requirements whereas the GEM sensor is an almost exact copy of the plasma electron sensors currently flying on the ACE and Ulysses spacecraft, albeit with new electronics and programming. Ions are detected at forty log-spaced energy levels between ∼ 1 eV and 14 keV by eight CEM detectors, while electrons with energies between ∼ 1 eV and 1.4 keV are measured at twenty log-spaced energy levels using seven CEMs. The spin of the spacecraft is used to sweep the fan-shaped fields-of-view of both instruments across all areas of the sky of interest, with ion measurements being taken forty times per spin and samples of the electron population being taken twenty four times per spin. Complete ion and electron energy spectra are measured every ∼ 2.5 min (four spins of the spacecraft) with adequate energy and angular resolution to determine fully 3-dimensional ion and electron distribution functions. The GIM and GEM plasma measurements are principally used to enable the operational solar wind sample collection goals of the Genesis mission but they also provide a potentially very useful data set for studies of solar wind phenomena, especially if combined with other solar wind data sets from ACE, WIND, SOHO and Ulysses for multi-spacecraft investigations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
18.
It is only within the last 5 years that we have learned how to recognize the unambiguous signature of magnetic reconnection in the solar wind in the form of roughly Alfvénic accelerated plasma flows embedded within bifurcated magnetic field reversal regions (current sheets). This paper provides a brief overview of what has since been learned about reconnection in the solar wind from both single and multi-spacecraft observations of these so-called reconnection exhausts.  相似文献   
19.
Gosling  J.T.  McComas  D.J.  Skoug  R.M.  Forsyth  R.J. 《Space Science Reviews》2001,97(1-4):189-192
Ulysses observed well-defined stream interaction regions, SIRs, associated with solar wind stream structure up to a latitude of S65° and shocks to at least a latitude of S71° during the second polar orbit. These SIRs and shocks produced a substantial heliospheric processing of the solar wind. Only a subset of the SIRs recurred on successive solar rotations and only about half of the well-defined SIRs observed poleward of S9.8° were bounded by forward-reverse shock pairs. The majority of the SIRs had local magnetic topologies and azimuthal orientations similar to, but meridional tilts different from, those observed in the first polar orbit when most SIRs corotated with the Sun. The irregular meridional tilts presumably were a consequence of a complex coronal geometry and the temporally evolving nature of the solar wind flow at this time. A lack of reverse shocks poleward of S54° (with one exception) and a lack of well defined SIRs poleward of S65° is evidence that SIRs develop more slowly with distance at high latitudes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
20.
This report emphasizes new observational aspects of CIR ions revealed by advanced instruments launched on the Ulysses, WIND, SOHO, and ACE spacecraft, and by the unique vantage point of Ulysses which carried out the first survey of Corotating Interaction Region (CIR) properties over a very wide range of heliolatitudes. With this more complete observational picture established, this review is the basis to consider the status of theoretical models on origin, injection, and acceleration of CIR particles reported by Scholer, Mann et al. (1999) in this volume. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号