首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   0篇
  国内免费   2篇
航空   154篇
航天技术   59篇
航天   31篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   5篇
  2018年   14篇
  2017年   6篇
  2016年   3篇
  2015年   7篇
  2014年   2篇
  2013年   15篇
  2012年   5篇
  2011年   10篇
  2010年   8篇
  2009年   13篇
  2008年   12篇
  2007年   14篇
  2006年   16篇
  2005年   7篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   8篇
  2000年   6篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   5篇
  1995年   5篇
  1994年   3篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1986年   1篇
  1985年   4篇
  1984年   9篇
  1983年   6篇
  1982年   10篇
  1981年   9篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有244条查询结果,搜索用时 875 毫秒
51.
Every year in fall and spring the Interstellar Boundary Explorer (IBEX) will observe directly the interstellar gas flow at 1 AU over periods of several months. The IBEX-Lo sensor employs a powerful triple time-of-flight mass spectrometer. It can distinguish and image the O and He flow distributions in the northern fall and spring, making use of sensor viewing perpendicular to the Sun-pointing spin axis. To effectively image the narrow flow distributions IBEX-Lo has a high angular resolution quadrant in its collimator. This quadrant is employed selectively for the interstellar gas flow viewing in the spring by electrostatically shutting off the remainder of the aperture. The operational scenarios, the expected data, and the necessary modeling to extract the interstellar parameters and the conditions in the heliospheric boundary are described. The combination of two key interstellar species will facilitate a direct comparison of the pristine interstellar flow, represented by He, which has not been altered in the heliospheric boundary region, with a flow that is processed in the outer heliosheath, represented by O. The O flow distribution consists of a depleted pristine component and decelerated and heated neutrals. Extracting the latter so-called secondary component of interstellar neutrals will provide quantitative constraints for several important parameters of the heliosheath interaction in current global heliospheric models. Finding the fraction and width of the secondary component yields an independent value for the global filtration factor of species, such as O and H. Thus far filtration can only be inferred, barring observations in the local interstellar cloud proper. The direction of the secondary component will provide independent information on the interstellar magnetic field strength and orientation, which has been inferred from SOHO SWAN Ly-α backscattering observations and the two Voyager crossings of the termination shock.  相似文献   
52.
53.
54.
Abstract

Although the term “Wayfinding” has been defined by several authors, it subsumes a whole set of tasks that involve different cognitive processes, drawing on different cognitive components. Research on wayfinding has been conducted with different paradigms using a variety of wayfinding tasks. This makes it difficult to compare the results and implications of many studies. A systematic classification is needed in order to determine and investigate the cognitive processes and structural components of how humans solve wayfinding problems. Current classifications of wayfinding distinguish tasks on a rather coarse level or do not take the navigator's knowledge, a key factor in wayfinding, into account. We present an extended taxonomy of wayfinding that distinguishes tasks by external constraints as well as by the level of spatial knowledge that is available to the navigator. The taxonomy will help to decrease ambiguity of wayfinding tasks and it will facilitate understanding of the differentiated demands a navigator faces when solving wayfinding problems.  相似文献   
55.
56.
The question of the origin of cosmic rays and other questions of astroparticle and particle physics can be addressed with indirect air-shower observations above 10 TeV primary energy. We propose to explore the cosmic ray and γ-ray sky (accelerator sky) in the energy range from 10 TeV to 1 EeV with the new ground-based large-area wide angle (ΔΩ ∼ 0.85 sterad) air-shower detector HiSCORE (Hundredi Square-km Cosmic ORigin Explorer). The HiSCORE detector is based on non-imaging air-shower Cherenkov light-front sampling using an array of light-collecting stations. A full detector simulation and basic reconstruction algorithms have been used to assess the performance of HiSCORE. First prototype studies for different hardware components of the detector array have been carried out. The resulting sensitivity of HiSCORE to γ-rays will be comparable to CTA at 50 TeV and will extend the sensitive energy range for γ-rays up to the PeV regime. HiSCORE will also be sensitive to charged cosmic rays between 100 TeV and 1 EeV.  相似文献   
57.
Reproduction is a vital characteristic of life, and sex is the most common reproductive mode in the eukaryotic world. Sex and reproduction are not necessarily linked mechanisms: Sexuality without reproduction exists, while several forms of asexual reproduction are known. The occurrence of sexuality itself is paradoxical, as it is very costly in evolutionary terms. Most of the hypotheses (more than 20) attempting to explain the prevalence of sex fall into two categories: Sex either creates good gene combinations for adaptation to environments or eliminates bad gene combinations counteracting the accumulation of mutations. In spite of this apparent wealth of beneficial effects of sex, asexuality is not rare. Most eukaryotic, asexual lineages are short-lived and can only persist through the presence of sexual roots, but at least two animal groups, bdelloid rotifers and darwinulid ostracods, seem to claim the status of ancient asexuals. Research on (a)sexuality is relevant to astrobiology in a number of ways. First, strong relationships between the origin and persistence of life in extreme environments and reproductive mode are known. Second, the "habitability" of nonterrestrial environments to life greatly depends on reproductive mode. Whereas asexuals can do equally well or better in harsh environments, they fail to adapt fast enough to changing abiotic and biotic environments. Third, it has been shown that plants reproduce mainly asexually in space, and sperm production and motility in some vertebrates are hampered. Both findings indicate that extraterrestrial life under conditions different from Earth might be dominated by asexual reproduction. Finally, for exchange of biological material between planets, the choice of reproductive mode will be important.  相似文献   
58.
Mars is unique to have undergone all planetary evolutionary steps, without global resets, till its geological death: this is reflected in the variety of its surface features. The determination of Mars surface composition has thus the potential to identify the processes responsible for the entire Mars evolution, from geological timescales to seasonal variations. Due to technical challenges, only few investigations have been performed so far. They are summarized in this paper, and their interpretation is discussed in terms of surface materials (minerals, ices and frosts).  相似文献   
59.
Studies based on data from the past 25–45 years show that irradiance changes related to the 11-yr solar cycle affect the circulation of the upper troposphere in the subtropics and midlatitudes. The signal has been interpreted as a northward displacement of the subtropical jet and the Ferrel cell with increasing solar irradiance. In model studies on the 11-yr solar signal this could be related to a weakening and at the same time broadening of the Hadley circulation initiated by stratospheric ozone anomalies. Other studies, focusing on the direct thermal effect at the Earth’s surface on multidecadal scales, suggest a strengthening of the Hadley circulation induced by an increased equator-to-pole temperature gradient. In this paper we analyse the solar signal in the upper troposphere since 1922, using statistical reconstructions based on historical upper-air data. This allows us to address the multidecadal variability of solar irradiance, which was supposedly large in the first part of the 20th century. Using a simple regression model we find a consistent signal on the 11-yr time scale which fits well with studies based on later data. We also find a significant multidecadal signal that is similar to the 11-yr signal, but somewhat stronger. We interpret this signal as a poleward shift of the subtropical jet and the Ferrel cell. Comparing the magnitude of the two signals could provide important information on the feedback mechanisms involved in the solar climate relationship with respect to the Hadley and Ferrel circulations. However, in view of the uncertainty in the solar irradiance reconstructions, such interpretations are not currently possible.  相似文献   
60.
Kuhn  J.R.  Floyd  L.  Fröhlich  C.  Pap  J.M. 《Space Science Reviews》2000,94(1-2):169-176

Despite 20 years of total solar irradiance measurements from space, the lack of high precision spatially resolved observations limits definitive answers to even simple questions like ``Are the solar irradiance changes caused solely by magnetic fields perturbing the radiative flux at the photosphere?" More subtle questions like how the aspheric structure of the sun changes with the magnetic cycle are only now beginning to be addressed with new tools like p-mode helioseismology. Solar 5-min oscillation studies have yielded precise information on the mean radial interior solar structure and some knowledge about the rotational and thermal solar asphericity. Unfortunately this progress has not been enough to generate a self-consistent theory for why the solar irradiance and luminosity vary with the magnetic cycle. We need sharper tools to describe and understand the sun's global aspheric response to its internal dynamo, and we need to be able to measure the solar cycle manifestation of the magnetic cycle on entropy transport from the interior to the photosphere in much the same way that we study the fundamentally more complex problem of magnetic flux transport from the solar interior. A space experiment called the Solar Physics Explorer for Radius, Irradiance and Shape (SPHERIS) and in particular its Astrometric and Photometric Telescope (APT) component will accomplish these goals.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号