首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6851篇
  免费   16篇
  国内免费   20篇
航空   3067篇
航天技术   2406篇
综合类   21篇
航天   1393篇
  2021年   74篇
  2019年   45篇
  2018年   160篇
  2017年   107篇
  2016年   112篇
  2015年   51篇
  2014年   178篇
  2013年   222篇
  2012年   212篇
  2011年   322篇
  2010年   229篇
  2009年   329篇
  2008年   366篇
  2007年   220篇
  2006年   156篇
  2005年   185篇
  2004年   182篇
  2003年   205篇
  2002年   145篇
  2001年   218篇
  2000年   127篇
  1999年   162篇
  1998年   190篇
  1997年   109篇
  1996年   171篇
  1995年   203篇
  1994年   189篇
  1993年   120篇
  1992年   149篇
  1991年   47篇
  1990年   48篇
  1989年   139篇
  1988年   59篇
  1987年   56篇
  1986年   63篇
  1985年   183篇
  1984年   144篇
  1983年   107篇
  1982年   115篇
  1981年   214篇
  1980年   49篇
  1979年   45篇
  1978年   50篇
  1977年   42篇
  1975年   50篇
  1974年   38篇
  1973年   32篇
  1972年   35篇
  1971年   35篇
  1970年   37篇
排序方式: 共有6887条查询结果,搜索用时 46 毫秒
91.
In accordance with the United Nations Outer Space Treaties [United Nations, Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, UN doc A/RES/34/68, resolution 38/68 of December 1979], currently maintained and promulgated by the Committee on Space Research [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], missions exploring the Solar system must meet planetary protection requirements. Planetary protection aims to protect celestial bodies from terrestrial contamination and to protect the Earth environment from potential biological contamination carried by returned samples or space systems that have been in contact with an extraterrestrial environment. From an exobiology perspective, Mars is one of the major targets, and several missions are currently in operation, in transit, or scheduled for its exploration. Some of them include payloads dedicated to the detection of life or traces of life. The next step, over the coming years, will be to return samples from Mars to Earth, with a view to increasing our knowledge in preparation for the first manned mission that is likely to take place within the next few decades. Robotic missions to Mars shall meet planetary protection specifications, currently well documented, and planetary protection programs are implemented in a very reliable manner given that experience in the field spans some 40 years. With regards to sample return missions, a set of stringent requirements has been approved by COSPAR [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], and technical challenges must now be overcome in order to preserve the Earth’s biosphere from any eventual contamination risk. In addition to the human dimension of the mission, sending astronauts to Mars will entail meeting all these constraints. Astronauts present huge sources of contamination for Mars and are also potential carriers of biohazardous material on their return to Earth. If they were to have the misfortune of being contaminated, they themselves would become a biohazard, and, as a consequence, in addition to the technical constraints, human and ethical considerations must also be taken into account.  相似文献   
92.
Cascaded detector for multiple high-PRF pulse Doppler radars   总被引:1,自引:0,他引:1  
A postdetection design methodology for a multiple high-pulse-repetition frequency (PRF) pulse Doppler radar has been developed. The postdetection processor consists of an M out of N detector where range and target ambiguities are resolved, followed by a square-law detector which enhances the minimum signal-to-noise (S/N) power-ratio per pulse burst performance. For given probabilities of false alarm and detection, formulas are derived from which the three thresholds associated with the cascaded detector can be found. Fundamental tradeoffs between the minimum S/N required, number of ghosts, and the number of operations (NOPs) that the cascaded detector must perform are identified. It is shown that the NOPs and the number of ghosts increase and the minimum S/N required decreases as the binary M out of N detector passes more detections to the square-law detector  相似文献   
93.
The results of research in a process of a probe rocket berthing to an asteroid are presented. Control laws were obtained as solutions of three problems, namely berthing considering transient processes in a rocket engine, fastest berthing with regard to fuel consumption and berthing in a scheduled time considering fuel consumption. A program trajectory obtained at solving of the first problem is suitable for mathematical modeling of berthing with the feedback control law and stabilization of angular motion. The solutions of the problems are reduced to simple formulas for controlling parameters calculation in the corresponding structures of control laws. The results can be applied in designing promising space vehicles intended for berthing to other space objects.  相似文献   
94.
The possibility of explaining the continuous emission of active galactic nuclei in the frame of a model of spherical accretion onto a massive black hole is discussed. Cool inhomogeneities (T 104°K) within the accretion flow could be responsible for the broad line emission if half of the accreting matter is in the dense phase. A crucial test of this hypothesis is the expected correlation between the ratio of the luminosity in lines to the total luminosity and the hardness of the continuous spectrum.  相似文献   
95.
The binary system Capella (G6 III + F9 III) has been observed on 1979 March 15 and on 1980 March 15–17 with the Objective Grating Spectrometer (OGS) onboard theEinstein Observatory. The spectrum measured with the 1000 l/mm grating covers the range 5–30 Å with a resolution < 1 Å. The spectra show evidence for a bimodal temperature distribution of emission measure in an optically thin plasma with one component 5 million degrees and the other one 10 million degrees. Spectral features can be identified with line emissions from O VIII, Fe XVII, Fe XVIII, Fe XXIV, and Ne X ions. Good spectral fits have been obtained assuming standard cosmic abundances. The data are interpreted in terms of emission from hot static coronal loops rather similar to the magnetic arch structures found on the Sun. It is shown that the conditions required by this model exist on Capella. Mean values of loop parameters are derived for both temperature components.  相似文献   
96.
The primary scientific objective of the ROSAT mission is to perform the first all sky survey with an imaging X-ray telescope leading to an improvement in sensitivity by several orders of magnitude compared with previous surveys. Consequently a large number of new sources (> 105) will be discovered and located with an accuracy of 1 arcmin. After completion of the survey which will take about half a year the instrument will be used for detailed observations of selected targets.The X-ray telescope consists of a fourfold nested Wolter type I mirror system with 80 cm aperture and 240 cm focal length, and three focal plane detectors. In the baseline version these will be imaging proportional counters (0.1 – 2 keV) providing a field of view of 20 × 20.  相似文献   
97.
98.
Ergun  R.E.  Carlson  C.W.  Mozer  F.S.  Delory  G.T.  Temerin  M.  McFadden  J.P.  Pankow  D.  Abiad  R.  Harvey  P.  Wilkes  R.  Primbsch  H.  Elphic  R.  Strangeway  R.  Pfaff  R.  Cattell  C.A. 《Space Science Reviews》2001,98(1-2):67-91
We describe the electric field sensors and electric and magnetic field signal processing on the FAST (Fast Auroral SnapshoT) satellite. The FAST satellite was designed to make high time resolution observations of particles and electromagnetic fields in the auroral zone to study small-scale plasma interactions in the auroral acceleration region. The DC and AC electric fields are measured with three-axis dipole antennas with 56 m, 8 m, and 5 m baselines. A three-axis flux-gate magnetometer measures the DC magnetic field and a three-axis search coil measures the AC magnetic field. A central signal processing system receives all signals from the electric and magnetic field sensors. Spectral coverage is from DC to 4 MHz. There are several types of processed data. Survey data are continuous over the auroral zone and have full-orbit coverage for fluxgate magnetometer data. Burst data include a few minutes of a selected region of the auroral zone at the highest time resolution. A subset of the burst data, high speed burst memory data, are waveform data at 2×106 sample s–1. Electric field and magnetic field data are primarily waveforms and power spectral density as a function of frequency and time. There are also various types of focused data processing, including cross-spectral analysis, fine-frequency plasma wave tracking, high-frequency polarity measurement, and wave-particle correlations.  相似文献   
99.
For direct measurement of the integrated radiation dose experienced in Earth synchronous orbit, p-i-n diodes were flown as radiation dosimeters on LES-6. The diode, which has a lifetime of 10-4 seconds in the intrinsic region, was originally developed as a neutron dosimeter, but can detect 1-MeV electron fluences as low as 1013 e·cm-2. Observations over three years in orbit are presented.  相似文献   
100.
In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号