首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  完全免费   1篇
  综合类   5篇
  2016年   1篇
  2008年   1篇
  2007年   1篇
  2001年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
高精度微分求积曲梁单元的建立与应用   总被引:8,自引:2,他引:6  
首先由能量原理导出曲梁弯曲问题的控制微分方程,在此基础上应用微分求积法原理分别给出了曲梁内点和端点的微分求积方程,由此形成曲梁单元的刚度方程,从而建立了微分求积曲梁单元,并给出了曲梁结构刚度方程的边界条件。通过算例分析,得到了微分求积单元法结构离散时应使单元数量少的原则和求解精度与单元长度比基本无关的性质。与有限元方法的结果比较表明,本文导出的曲梁单元是一种具有很高求解精度的单元。》  相似文献
2.
加筋板稳定性微分求积单元法分析   总被引:2,自引:2,他引:0  
板和加筋板结构的稳定性特性,是设计人员十分关注的一个问题。本文首次采用新近提出的微分求积单元法分析了各向同性加筋板的稳定性问题,建立了微分求积梁单元和板单元,并给出了详细的分析过程。通过与现有结果的对比验证了所建立的分析过程和程序的正确性。计算结果表明:微分求积单元法具有简单、收敛速度快、计算量少和精度高等优点。  相似文献
3.
用微分求积单元法分析了压电圆浅球壳在外加电压和外载作用下的非线性静力特性 ,首次给出了详细的公式和求解过程 ,并分析了几个典型算例 ,得到了非常精确的结果。基于本文的研究结果可以得出以下的几点结论 :微分求积单元法是一种有用的数值分析方法 ;压电圆浅球壳的几何形状理论上可以被控制 ;对于某些几何形状的压电圆浅球壳 ,当外加电压达到临界值时 ,即使没有外加载荷跳跃失稳也会发生。  相似文献
4.
基于Love的空间弯扭杆平衡方程,通过引入井壁约束条件导出了平面变曲率井内受径向约束管柱的平衡方程。采用微分求积单元和增量迭代法求解了曲率线性变化的井内管柱的非线性屈曲问题,通过与有限元计算结果的对比验证了所构建方法和编写程序的正确性,而且还表明微分求积单元法有方法简单、易于实施,计算量少、精度较高等优点。计算结果表明,等曲率井内管柱屈曲的临界载荷明显大于曲率线性变化井内管柱屈曲的临界载荷,另外,变曲率井眼的曲率变化对管柱弯矩、井壁约束力有显著的影响。  相似文献
5.
为了得到软芯三明治梁在移动集中载荷下的动力响应,基于扩展的高阶三明治梁理论和Hamilton原理,建立了任意节点的弱形式求积三明治梁单元,利用微分求积法的权系数显式表达式给出了单元刚度矩阵和质量矩阵的公式,并验证了刚度矩阵和简化质量矩阵的正确性和方法的有效性,结果表明弱形式的求积单元法具有精度和计算效率高的优点。然后,采用中心差分法首次给出了两端固支软芯三明治梁在移动集中载荷作用时的动力响应。本文的研究拓展了弱形式求积法的应用范围。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号