首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 686 毫秒
1.
We review recent experimental studies concerning the evolution, driven by ion irradiation, of carbonaceous material from frozen gas to a refractory molecular solid. Under further irradiation the latter changes to a polymer-like material and ultimately to amorphous carbon. Most of the results have been obtained by "in situ" and remote IR and Raman spectroscopy. The results have been applied to demonstrate that molecular solids may be easily formed by irradiation of frozen mantles in dense interstellar clouds. Polymer-like material and amorphous carbons may result by further irradiation of organic mantles on grains in the diffuse interstellar medium. Those grains, during the aggregation to form extended bodies like comets (T-Tau phase of the Sun), are further modified. These latter are also irradiated, after the comet formation, during their long stay in the Oort cloud. In particular it has been suggested that comet may develop an ion-produced cometary organic crust that laboratory evidences show to be stable against temperature increases experienced during passages near the Sun. The comparison between the Raman spectra of some IDP (Interplanetary Dust Particles) and the Raman spectra of some ion-produced amorphous carbons, is also discussed.  相似文献   

2.
The possibility that the organic molecules that have been found near comets could have formed by UV photolysis of interstellar ices was investigated by simulating this process in the laboratory. It is found that oxygen rich organics containing C-OH, C-H and C=O groups are readily produced in this way. These results indicate that part of the organic material in comets may have formed by UV irradiation of ices, either in the pre-solar nebula or in the interstellar phase.  相似文献   

3.
The abundance and composition of complex organic (carbonaceous) material in the interstellar dust is followed as the dust evolves in its cyclic evolution between diffuse and dense clouds. Interstellar extinction, laboratory and space analog experiments, dust infrared absorption spectra, the cosmic abundance of the condensible atoms, and space and ground-based observations of comet dust are used to impose constraints on the organic dust component as mantles on silicate cores.  相似文献   

4.
Carbonaceous chondrites, a class of primitive meteorite, have long been known to contain their complement of carbon largely in the form of organic, i.e., hydrocarbon-related, matter. Both discrete organic compounds and an insoluble, macromolecular material are present. Several characteristics of these materials provide evidence for their abiotic origin. The principal formation hypotheses have invoked chemistry occurring either in the solar nebula or on the parent body. However, recent stable isotope analyses of the meteorite carboxylic acids and amino acids indicate that they may be related to interstellar cloud compounds. These results suggest a formation scheme in which interstellar compounds were incorporated into the parent body and subsequently converted to the present suite of meteorite organics by the hydrothermal process believed to have formed the clay minerals of the meteorite matrix.  相似文献   

5.
Astronomical infrared spectra are used to confirm the existence of complex organic molecules produced by ultraviolet photoprocessing of interstellar grain mantles. This material is shown to be the major component of the interstellar grains between the sun and the galactic center and, by inference, constitutes more than 10 million solar masses — or close to one part in a thousand of the entire mass of the milky way galaxy. It may be demonstrated that the primitive chemistry of the earth's surface was dominated by these extraterrestrial molecules after aggregated into comets if the rate of comet impacts with the earth was comparable with that required to account for the extinction of species over the past 300 million years.

Ultraviolet irradiation of bacterial spores has been studied for the first time under simulated interstellar conditions. The inactivation time predicted for the less dense regions of space is at most several hundred years. Within molecukar clouds it is shown on theoretical and experimental grounds that this t the estimated cloud. However survival of spores during their initial exposure to the solar ultraviolet presents a problem for panspermia because it requires that in the process of ejection from the earth's surface they must be enclosed within a cocoon (or mantle) of ultraviolet absorbing material of 0.6 μm thickness. Thus, although panspermia can not be rejected on the basis of lack of interstellar survival there may remain insurmountable obstacles to its occuring because of the very special protective shield requirements during ejection from its planetary source.  相似文献   


6.
Comet organics are traced to their origin in interstellar space. Possible sources of comet organics from solar nebula chemistry are briefly discussed. The infrared spectra of interstellar dust are compared with spectra of solar (space) irradiated laboratory organic residues and with meteorites. The spectra compare very favorably. The atomic composition of first generation laboratory organic residues compares favorably with that of comet Halley organics if divided into appropriate "volatile" (less refractory) and "refractory" (more refractory) complex organics.  相似文献   

7.
We present the photochemical and thermal evolution of both non-polar and polar ices representative of interstellar and pre-cometary grains. Ultraviolet photolysis of the non-polar ices comprised of O2, N2, and CO produces CO2, N2O, O3, CO3, HCO, H2CO, and possibly NO and NO2. When polar ice analogs (comprised of H2O, CH3OH, CO, and NH3) are exposed to UV radiation, simple molecules are formed including: H2, H2CO, CO2, CO, CH4, and HCO (the formyl radical). Warming produces moderately complex species such as CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), R-CN and/or R-NC (nitriles and/or isonitriles). Several of these are already known to be in the interstellar medium, and their presence indicates the importance of grain processing. Infrared spectroscopy, 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry demonstrate that after warming to room temperature what remains is an organic residue composed primarily of hexamethylenetetramine (HMT, C6H12N4) and other complex organics including the amides above and polyoxymethylene (POM) and its derivatives. The formation of these organic species from simple starting mixtures under conditions germane to astrochemistry may have important implications for the organic chemistry of interstellar ice grains, comets and the origins of life.  相似文献   

8.
We present a comparison between the IR spectrum of the galactic center source IRS 7 and the spectrum of a carbonaceous polymer from the Orgueil meteorite. We have obtained an almost perfect match between the two spectra in the region between 3020-2790 cm-1, which suggests that the chemical composition of the interstellar organic matter and that of the meteorite polymer are similar or that the meteoritic polymer could be a well preserved interstellar organic molecule. Assuming that the meteoritic polymer has the same C/H ratio as these interstellar molecules, we find that 45 % of the total abundance of carbon in the line of sight toward IRS 7 is trapped in such an interstellar organic grain material.  相似文献   

9.
We present experimental results in order to understand the physico-chemical effects induced by fast ions irradiating sulfur bearing molecules. The experiments are relevant both to Solar System objects (icy satellites, comets, TNOs) and icy mantles on grains in the interstellar medium. Here we concentrate on the application to the Galilean moons that are exposed to high energetic particle fluxes in the jovian magnetosphere.  相似文献   

10.
The evidence that living organisms were already extant on the earth almost 4 Gyr ago and that early bombardment by comets and asteroids created a hostile environment up to about this time has revived the question of how it was possible for prebiotic chemical evolution to have provided the necessary ingredients for life to have developed in the short intervening time. The actual bracketed available temporal space is no more than 0.5 Gyr and probably much less. Was this sufficient time for an earth-based source of the first simple organic precursor molecules to have led to the level of the prokaryotic cell? If not, then the difficulty would be resolved if the ancient earth was impregnated by organic molecular seed from outer space. Curiously, it seems that the most likely source of such seeds was the same a one of the sources of the hostile enviroment, namely the comets which bombarded the earth. With the knowledge of comets gained by the space missions it has become clear that a very large fraction of the chemical composition of comet nuclei consists of quite complex organic molecules. Furthermore it has been demonstrated that comets consist of very fluffy aggregates of interstellar dust whose chemistry derives from photoprocessing of simple ice mixtures in space. Thus, the ultimate source of organics in comets comes from the chemical evolution of interstellar dust. An important and critical justification for assuming that interstellar dust is the ultimate source of prebiotic molecular insertion on the earth is the proof that comets are extremely fluffy aggregates, which have the possibility of breaking up into finely divided fragments when the comet impacts the earth's atmosphere. In the following we will summarize the properties of interstellar dust and the chemical and morphological structure of comets indicated by the most recent interpretations of comet observations. It will be shown that the suitable condition for comets having provided abundant prebiotic molecules as well as the water in which they could have further evolved are consistent with theories of the early earth environment.  相似文献   

11.
PAHs (polycyclic aromatic hydrocarbons) are probably present as a mixture of neutral and ionized species and are responsible for the set of infrared emission bands in the 2-15 microns regions, which are observed in many different objects like reflection and planetary nebulae and external galaxies. PAHs are suggested to be the most abundant free organic molecules and ubiquitous in space. PAHs might also exist in the solid phase, included in interstellar ices in dense clouds. A complex aromatic network is expected on interstellar grains in the diffuse interstellar medium. The existence of an aromatic kerogen-like structure in carbonaceous meteorites and its similarity with interstellar spectra suggests a link between interstellar matter and primitive Solar System bodies.  相似文献   

12.
Recent developments of millimeter astronomy have led to the discovery of more and more complex molecules in the interstellar medium. In a similar way, attempts have been made to detect complex molecules in the atmospheres of the most primitive bodies of the Solar System, i.e. outer planets and comets, as well as in Titan's atmosphere. An important progress has been achieved thanks to the continuous development of infrared astronomy, from the ground and from space vehicles. In particular, an important contribution has come from the IRIS-Voyager infrared spectrometer with the detection of prebiotic molecules on Titan, and some complex organic molecules on Jupiter and Saturn. Another important result has been the observation of carbonaceous material in the immediate surroundings of Comet Halley's nucleus. In the near future, the search for organic molecules in the outer Solar System should benefit from the developments of large millimeter antennae, and in the next decade, from the operation of infrared Earth-orbiting spacecrafts (ISO, SIRTF).  相似文献   

13.
The discovery and synthesis of fullerenes led to the hypothesis that they may be present and stable in interstellar space. Fullerenes have been reported in an impact crater on the LDEF spacecraft. Investigations of fullerenes in carbonaceous meteorites have yielded only small upper limits. Fullerene compounds and their ions could be interesting carrier molecules for some of the "diffuse interstellar bands" (DIBs), a long standing mystery in astronomy. We have detected two new diffuse bands that are consistent with laboratory measurements of the C60+, as first evidence for the largest molecule ever detected in space. Criteria for this identification are discussed. The inferred abundance (up to 0.9 % of cosmic carbon locked in C60+) suggests that fullerenes may play an important role in interstellar chemistry. We present new observations on DIB substructures consistent with fullerene compounds, and the search for neutral C60 in the diffuse medium.  相似文献   

14.
In Laboratory Astrophysics at Leiden University a laboratory analog for following the chemical evolution of interstellar dust in space shows that the dust contains the bulk of organic material in the universe. We follow the photoprocessing of low temperature (10 K) mixtures of ices subjected to vacuum ultraviolet radiation in simulation of interstellar conditions. The most important, but necessary, difference is in the time scales for photo-processing. One hour in the laboratory is equivalent to one thousand years in low density regions of space and as much as, or greater than, ten thousand to one million years in the depths of dense molecular clouds. The ultimate product of photoprocessing of grain material in the laboratory is a complex nonvolatile residue which is yellow in color and soluble in water and methanol. The molecular weight is greater than the mid-hundreds. The infrared absorption spectra indicate the presence of carboxylic acid and amino groups resembling those of other molecules of presumably prebiological significance produced by more classical methods. One of our residues, when subjected to high resolution mass spectroscopy gave a mass of 82 corresponding to C4H6H2 after release of CO2 and trace ammounts of urea suggesting amino pyroline rings. The deposit of prebiotic dust molecules occurred as many as 5 times in the first 500-700 million years on a primitive Earth by accretion during the passage of the solar system through a dense interstellar cloud. The deposition rate during each passage is estimated to be between 10(9) and 10(10) g per year during the million or so years of each passage; i.e., a total deposition of 1O(9)-10(10) metric tons of complex organic material per passage.  相似文献   

15.
High molecular weight organic compounds are involved in the chemistry and physics of many astrophysical and planetary objects. They are or should be present in interstellar dust, in comets and meteorites, in the Giant planets and Titan, in asteroids Triton and icy satellites. They represent a class of very complex organic material, part of which may have played a role in the origin of life on Earth. Thus they directly concern prebiotic chemistry and exobiology.  相似文献   

16.
We review the properties of Quenched Carbonaceous Composite (QCC), a residue produced from a hydrocarbon plasma, and the properties of its derivatives. A. Sakata and his colleagues have shown that QCC has a 220 nm absorption band, visible fluorescence matching the extended red emission seen in reflection nebulae, and infrared absorption bands that correspond to the infrared emission features in reflection nebulae, HII regions, and planetary nebulae. These properties make QCC a strong candidate material as a laboratory analog to the carbonaceous material in the interstellar medium. QCC is distinguished from the PAH hypothesis in that (1) it is a condensate composed of aromatic and aliphatic molecules, as well as radicals; (2) it exhibits a 220 nm absorption that is very similar in wavelength to the 217 nm absorption in the interstellar medium; (3) it exhibits visible fluorescence consistent with that seen in reflection nebulae; and (4) the bands at 7.7 and 8.6 microns are caused by ketone bands in oxidized QCC. The aromatic component in QCC is thought to be typically 1-4 rings, with the majority being about 1-2 rings.  相似文献   

17.
Some results, recently obtained from laboratory experiments of ion irradiation of ice mixtures containing H, C, N, and O, are here summarized. They are relevant to the formation and evolution of complex organics on interstellar dust, comets and other small bodies in the external Solar System. In particular the formation of CN-bearing species is discussed. Interstellar dust incorporated into primitive Solar System bodies and subsequently delivered to the early Earth, may have contributed to the origin of life. The delivery of CN-bearing species seems to have been necessary because molecules containing the cyanogen bond are difficult to be produced in an environment that is not strongly reducing as that of the early Earth probably was. Moreover we report on an ongoing research program concerning the interaction between refractory materials produced by ion irradiation of simple ices and biological materials (amino acids, proteins, cells).  相似文献   

18.
What is the influence of hydrogen escape from the atmosphere of small planetary bodies on the synthesis of organic molecules in that atmosphere? To answer this question, laboratory experiments have been performed to study the evolution of different reducing model atmospheres submitted to electrical discharges, with and without the simulation of H2 escape. A study of mixtures of nitrogen and methane shows a very strong effect of H2 escape on the formation of organic nitriles, the only nitrogen containing organics detected in the gas phase. These are HCN, CH  CCN, (CN)2, CH2CHCN, CH3 CN and CH3CH2CN. The yield of synthesis of most of these compounds is noticeably increased, up to several orders of magnitude, when hydrogen escape is simulated. The escape of H2 from the atmosphere of the primitive Earth may have played a crucial role in the formation of reactive organic molecules such as CHCCN or (CN)2, which can be considered as important prebiotic precursors. These experimental results may also explain extant data concerning the nature and relative abundance of organics present in the atmosphere of Titan, a planetary satellite which may be an ideal model within our solar system for the study of organic cosmochemistry and exobiology.  相似文献   

19.
Chemical evolution of primitive solar system bodies.   总被引:1,自引:0,他引:1  
In this paper we summarize some of the most salient observations made recently on the organic molecules and other compounds of the biogenic elements present in the interstellar medium and in the primitive bodies of the solar system. They include the discovery of the first phosphorus molecular species in dense interstellar clouds, the presence of complex organic ions in the dust and gas phase of Halley's coma, the finding of unusual, probably presolar, deuterium-hydrogen ratios in the amino acids of carbonaceous chondrites, and new developments on the chemical evolution of Titan, the primitive Earth, and early Mars. Some of the outstanding problems concerning the synthesis of organic molecules on different cosmic bodies are also discussed from an exobiological perspective.  相似文献   

20.
The abundance ratio of neutral hydrogen to neutral helium, as deduced from interplanetary observations of Lyman-alpha and He 584 A radiation by Mariner 10, is significantly lower than the cosmic abundance ratio of these elements, thus showing that the local interstellar medium (LISM) is partly ionized. It is shown that an important source of ionization of the LISM can be thermal collisions, yielding an ionization degree of about 50% for the hydrogen component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号