首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
近年来,无线电通讯、雷达技术、空间技术、计测技术等对其频率源的短期频率稳定度的要求越来越高。频率源的短稳指标甚至成为一些工程系统的主要误差源.随着频率源短期频率稳定度性能的迅速提高,建立适应各种频率短稳指标测试用的测量系统,业已提到日程上来。在有源法短稳测试系统中,参考源的低噪声特性在测试系统中起着决定性的作用.本文就有源频率稳定度测试系统对参考源的一般要求和选择方法以及如何充分利用所选用的参考源等进行了讨论,并对两个所选用的参考源系统的性能指标做了简单介绍.  相似文献   

2.
随着时间和频率测量技术的发展以及测速、导航等技术的广泛应用,对频率源的短期频率稳定度(以下简称短稳)要求愈来愈高,特别是目前对频率源的毫秒级采样时间的频率稳定度也提出了要求。晶体振荡器(以下简称晶振)的短稳在各类频率源中目前还是处于领先地位,加上它结构简单、工作可靠、能长期连续工作、耗电少、成本低等优点,使它的应用非常广泛。各种原子频标的出现虽然将频率准确度和老化漂移的指标提高了几个数量级,但是当它们  相似文献   

3.
本文根据多卜勒测速系统对频率源短稳的要求,结合工程实例讨论了锁相改善振荡器相位噪声的几个问题。  相似文献   

4.
一、引言无线电工程上离不开各种源。晶振、频率综合器、原子频标就是不同类型的源。随着通信、雷达、卫星、空间技术的飞速发展,对无线电信号极其重要的频率特性一短期频率稳定度(毫秒及秒级频率稳定度)提出了愈来愈高的要求。因而,对短稳比对测试设备的要求则更高了。在通常采用的时域测量方法,即用“误差倍增技术”扩大信号的相位起伏<噪声功率>的“多周期测量法”做成的短稳比对测试设备里,倍频器是关键部件之一。换  相似文献   

5.
相位噪声是太赫兹波技术应用中的一项关键技术指标,如何精确测量太赫兹波的相位噪声是太赫兹技术的重要研究方向之一。采用太赫兹下变频技术实现相位噪声测量系统的频率扩展,搭建(110~500)GHz太赫兹相位噪声测量系统,实现对太赫兹频率源相位噪声的测量。实验结果表明,所研制的太赫兹相位噪声测量系统的底部噪声优越,可用于(110~500)GHz频段太赫兹频率源相位噪声的测试,在太赫兹相位噪声的计量测试、标准研制及相关产品转化等方面具有广泛的应用前景。  相似文献   

6.
目前用于时间保持的主要频率源类型是铯钟和氢钟。氢钟具有优良的短期稳定度和良好的低噪声特性,非常适合做主钟频率源。然而绝大数氢钟具有明显的频率漂移,使氢钟的长期稳定度随着时间的推移不断降低。因此在时间保持应用中,必须对氢钟的频率偏差和漂移进行准确的预测,才能充分发挥其作用。本文利用经验模态分解方法提取氢钟频率变化的趋势项,实现氢钟频率预报,并利用该预报频率对其输出信号进行模拟驾驭。结果表明:该方法正确、有效,不仅保持氢钟短稳优秀的特性,而且改善了其长期稳定度。  相似文献   

7.
目前用于时间保持的主要频率源类型是铯钟和氢钟。氢钟具有优良的短期稳定度和良好的低噪声特性,非常适合做主钟频率源。然而绝大数氢钟具有明显的频率漂移,使氢钟的长期稳定度随着时间的推移不断降低。因此在时间保持应用中,必须对氢钟的频率偏差和漂移进行准确的预测,才能充分发挥其作用。本文利用经验模态分解方法提取氢钟频率变化的趋势项,实现氢钟频率预报,并利用该预报频率对其输出信号进行模拟驾驭。结果表明:该方法正确、有效,不仅保持氢钟短稳优秀的特性,而且改善了其长期稳定度。  相似文献   

8.
对于小型光抽运铯原子频率标准来说,激光稳频参考源的稳定性决定了激光系统的频率稳定性,进而决定了整机的频率稳定度指标。激光稳频可以采用饱和吸收稳频和铯束管荧光稳频两种方案。经对比了采用这两种激光稳频方式的整机指标,取得了初步的结果:与采用饱和吸收稳频相比,采用铯束管荧光稳频后,整机的短期稳定度指标没有明显恶化,长期稳定度指标有了明显提升,3.21E-14/100 000s,1.13E-14/400 000s,未出现闪变平台,仍在继续测试中。结果显示,铯束管荧光稳频技术应用光抽运小型铯原子频率标准,具有提高整机长期稳定度指标和增强环境适应性的潜力。  相似文献   

9.
时间频率在国家经济建设、科学研究、国家安全具有十分重要的意义。本文介绍了国内外高稳晶振、铷原子频率标准、守时型氢原子频率标准和铯原子频率标准、微型相干布局囚禁原子钟、低温蓝宝石微波源和超稳激光微波源以及铯原子喷泉钟的国内外发展情况、技术指标等。铷原子频率标准打破国外垄断,为北斗导航系统提供高精度的时间基准,守时型氢原子频率标准和铯原子频率标准已实现工程化,但日频率稳定度和日频率漂移率指标有待进一步提高,铯喷泉基准方面已接近国际先进水平,新型原子频标发展方兴未艾。  相似文献   

10.
本文采用低频高稳振荡与低噪声倍频相结合的方法,并进行精密控温设计,研制了一种高频高稳恒温晶体振荡器,输出频率为100MHz,短期频率稳定度可以实现2.68E-13/s,2.54E-12/100s,老化率优于7E-11/d,谐波优于-50dBc。经随机振动、冲击和温度冲击等环境试验考核,晶振试验前后频率变化均小于±5E-9,可以很好地满足多领域应用对高频高稳定信号源的需求,可靠性高,有利于简化系统构成,缩小设备体积。  相似文献   

11.
介绍体积仅为30mm×30mm×40mm,重量仅为50g,适用于宇航系统的新型高稳定、高可靠频率源的研制情况。给出各项技术指标的测试结果。  相似文献   

12.
XB14型精密石英谐振器是为现代通信、导航和航天飞行器工程系统及地面高稳晶振研制的一种小型晶体频率控制元件。该谐振器采用了硬玻璃扁平壳和高频感应真空封接技术,具有体积小、密封性好、无封接污染,高可靠和低老等特点,它的频率范围在5~250MHz,老化率在10~(-8)~10~(-9)/d量级。  相似文献   

13.
提出了一种基于偏调锁频的差拍高精度频率稳定度测量方法,阐述了基于这种方法设计的频率稳定度测量仪的具体实现过程,给出了已研制成的频稳测量仪的测试结果。  相似文献   

14.
一、稳压电源指标要求与设计考虑锁相固态源需要低纹波、高稳定度的直流电源供电。电源的纹波特性对锁相固态源的影响很大。其影响主要是使锁相源的毫秒级短稳变差。由于电源中纹波及低频噪声大都在1KHz以下,这样正好影响了固态源的  相似文献   

15.
第 1期铷原子频率标准的小型化研究周忠石 王 亮 郭鹏翔 (1)…………………………………………………用大失配功率座法测量稳幅环路的等效源反射系数陈云梅 杨春涛 (7)……………………………………时间频率的高准确度测量方法秦运柏 (13)………………………………………………………………………动态相位噪声测试系统罗 健 张湘晶 (17)……………………………………………………………………5 0MHz低噪声压控温补晶振的研制亓 贞 (2 1)…………………………………………………………………数字示波器检定方法研究申其祥 舒 艳…  相似文献   

16.
一、引言近年来,随着我国毫米波技术的迅速发展,需要建立毫米波计量标准。一个幅度稳定的信号源,无论是在建标工作中,还是在毫米波日常测试工作中,都是必不可少的。目前,我国的毫米波固态源大多是固定频率的,即使有频率可调的,频率稳定度和幅度稳定度也都较差,难以满足计量测试工作的要求。而速调管毫米波源,调节频率麻烦,体积大,价格贵,频率和幅度稳定度也不太理想。又由于一些国家在毫米波技术、设备方面对我国实行严格的禁运政策,即使能引进某些产品,也只能是小功率的源,且价格十分昂贵。这种小功率的源在大多数计量测试工作中都不能满足工作需要。为此,我们和中国科技大学协作研制了  相似文献   

17.
窄线宽稳频激光器在精密干涉测量、光学频率标准、激光通信、激光陀螺、激光雷达、基本物理常数测量、冷原子系统等研究领域有着广泛的应用。稳频激光器的线宽是评价稳频性能的一个重要参数,利用AV4036系列频谱分析仪设计并搭建了用于稳频半导体激光器拍频线宽测量的实验系统,验证了方案的可行性。  相似文献   

18.
本文介绍八毫米稳幅系统的建立及其性能,介绍了信号幅度稳定度的自动测试方法,给出了速调管振荡源的稳幅数据。  相似文献   

19.
原子磁强计、激光冷却等技术需要将激光频率稳定在远离原子跃迁频率几兆赫兹的大失谐处,法拉第旋光光谱稳频方法能够实现远共振线的大失谐处的稳频,但是存在稳频点调节不便的问题。在法拉第旋光光谱稳频方法的基础上进行改进,提出了一种快速精确调节稳频点的远共振线激光稳频方法,能够在几十至几百兆赫兹范围内对稳频点频率进行快速精确的调节。基于该方法使失谐为-6.2 GHz的稳频点精确频移130 MHz,并实现频率漂移3.3 MHz/h,波动均方根值0.6 MHz/h的激光频率稳定度,满足原子磁强计对失谐及频率稳定性的要求。另外,分析了温度对该稳频方法的影响,推导了预估稳频点频率的物理参数,并将温度调节和声光调制器(AOM)调节相结合,以更好地实现在远共振线大失谐处对激光频率的长期稳定和精确控制。   相似文献   

20.
介绍了用铷吸收光谱法对半导体激光器进行稳频,通过对包括半导体激光驱动源、稳频器、吸收室、光路等系统的优化设计,达到具有高信噪比微分误差信号,从而大大提高了半导体激光器稳频锁定灵敏度和长期稳定性。采用文中介绍的方法建立的光波长标准系统,其波长的测量重复性、稳定性可满足当前和将来很长一段时间光波长计校准的需要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号