首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
针对升力式飞行器的滑翔段制导问题,提出一种阻力和升力加速度指令在线快速解析与跟踪制导方法。通过一维质点运动学解析并加权直接得到阻力加速度指令。引入虚拟目标和伪视线角的概念,将比例导引应用于滑翔段得到升力加速度指令。利用阻力加速度和攻角的单调性关系, 通过改变攻角跟踪阻力加速度指令。倾侧角用于辅助跟踪阻力加速度指令,满足给定条件后切换至跟踪升力加速度指令。航迹方向角的控制通过倾侧角按反转走廊边界改变正负号实现。动压、热流、过载等约束可通过相关敏感参数的设计得到满足。所提方法不依赖参考轨迹和攻角剖面,计算量小,可实现对终端速度和终端高度的高精度控制。   相似文献   

2.
考虑禁飞区规避的预测校正再入制导方法   总被引:2,自引:2,他引:0  
针对升力式高超声速飞行器再入滑翔侧向制导问题,提出了一种考虑禁飞区规避的预测校正制导方法.纵向制导采用落点误差预测与指令校正相结合的方式,不断更新倾侧角的幅值,实时修正轨迹纵程.侧向制导设计了一种倾侧角反转逻辑的切换机制,利用航向角误差走廊和航向角导向区域控制飞行器的侧向运动.CAV-H再入滑翔飞行器制导仿真实例表明,该方法不依赖于标准再入轨迹,能够导引飞行器规避禁飞区约束.Monte Carlo仿真验证表明,在随机初始扰动和误差存在的情况下,该制导方法具有良好的鲁棒性.   相似文献   

3.
针对高超声速飞行器末段打击问题,提出了具有自适应能力的比例导引律,实现了高精度定点定向打击.通过纵向进入条件的分析,设计了一种提高比例导引进入时间的收敛策略,从而使飞行器有足够的时间进行横纵向调整,保证了落角落点约束的满足.由于制导参数直接影响落点和落角的精度,而飞行器动力学约束会导致无法理想响应制导指令,因此设计了一种闭环非线性自适应律,通过在线选择制导参数确保飞行器以高精度命中目标.仿真结果表明了该末制导方法的有效性和准确性.  相似文献   

4.
针对高超声速飞行器末段打击问题,提出了具有自适应能力的比例导引律,实现了高精度定点定向打击.通过纵向进入条件的分析,设计了一种提高比例导引进入时间的收敛策略,从而使飞行器有足够的时间进行横纵向调整,保证了落角落点约束的满足.由于制导参数直接影响落点和落角的精度,而飞行器动力学约束会导致无法理想响应制导指令,因此设计了一种闭环非线性自适应律,通过在线选择制导参数确保飞行器以高精度命中目标.仿真结果表明了该末制导方法的有效性和准确性.  相似文献   

5.
针对高超声速变形飞行器再入制导问题,提出了一种采用伸缩式机翼的高超声速变形飞行器外形方案,建立了含有展长变形量的气动模型和动力学模型。将该变形飞行器的展长变形量扩展为控制变量,分析了倾侧角、展长变形量和终端航程、高度之间的关系。在此基础上,利用倾侧角和展长变形量在线预测剩余航程和终端高度,通过数值方法校正2个控制量以满足航程约束和高度约束,通过航向角走廊确定倾侧角符号。仿真结果表明:该变形飞行器再入制导方法制导精度高,相比于传统固定外形飞行器终端约束能力更强、轨迹更加平滑,且在扰动条件下具有一定鲁棒性。   相似文献   

6.
针对机动飞行器的小范围高频率侧向机动飞行问题,结合飞行器的运动学和动力学方程,通过解析方法给出了机动幅值和飞行器最大可用过载下的最大机动频率,同时利用粒子群优化方法进行了制导律最优频率的优化。基于解析规划算法给出了正弦机动制导律的解析形式以实现飞行器在侧向方向的机动导引飞行。仿真结果表明:解析算法能够精确得出制导律频率,而粒子群优化方法的精度也能很好的满足要求,误差在5%以内。正弦机动制导律在大速度下可以较好的完成任务目标;在小速度下,幅值误差会有小幅度的增加。  相似文献   

7.
基于能量的高超声速飞行器再入混合制导方法   总被引:4,自引:1,他引:3  
针对大升阻比高超声速飞行器滑翔再入制导问题,提出一种基于能量的混合制导方法.建立以能量为自变量的三自由度运动学方程,利用拟平衡滑翔特性将过程约束转换成倾侧角约束.纵向制导在初始下降段采用固定数值倾侧角飞行,在拟平衡滑翔段基于剩余航程随能量单调变化的特性将标准轨迹进行分段,然后分段进行在线预测校正制导.侧向制导基于横程与能量的近似线性关系,设计了由分段漏斗形横程走廊控制的倾侧角反转逻辑,以保证侧向制导精度.分析研究和仿真结果表明该方法易于实现,有效减小了制导指令的解算时间,制导和落点精度高,且对再入初始偏差及过程扰动不敏感.   相似文献   

8.
探月飞船预测-校正再入制导律设计   总被引:2,自引:0,他引:2  
针对以第二宇宙速度返回的探月飞船再入制导律设计问题,采用一种数值预测一校正的预测制导法,分析了飞船配平攻角的飞行特性,建立了再入三自由度运动方程。进而详细介绍了预测一校正及其纵向、横向制导律的基本原理。通过标准初始状态、有误差初始状态两种条件下的仿真分析,表明这种预测一校正制导律在满足各种约束的条件下,不仅能够达到较高的精度,而且对初始误差具有良好的鲁棒性,能够应付再入时各种不确定性因素的影响。  相似文献   

9.
  总被引:3,自引:1,他引:2  
针对高超声速飞行器再入制导问题,提出了一种基于轨迹线性化控制(TLC)方法的轨迹跟踪制导律.利用再入飞行器动力学固有时间尺度分离的特点,通过外环路和内环路的设计分别对高度和速度进行控制.轨迹倾角被用作外环路的虚拟控制量来控制高度;倾侧角和迎角用于在内环路跟踪轨迹倾角指令和速度.在反馈回路通过设计线性时变控制器对误差动态进行镇定.反馈增益可在线计算并能符号化地表示为参考轨迹的函数,从而避免了增益插值调度和可能需要的模式切换.大量仿真结果表明:TLC可以实现轨迹的精确跟踪且控制参数对不同参考轨迹的依赖性很小;TLC与基于轨迹在线生成的制导方法的结合可以显著提高再入制导的自主性和适应性.  相似文献   

10.
基于在线轨迹迭代的自适应再入制导   总被引:3,自引:1,他引:2  
针对传统轨迹跟踪制导方法在再入飞行中无法较好适应导航模式切换等突变状况的问题,提出了一种能够有效应对制导系统输入信息不连续性的自适应在线轨迹生成方法。该方法通过实时的多项式拟合以及迭代过程确定满足终端约束条件的高度-速度剖面,并解算出当前飞行状态下所需的攻角与倾侧角指令,从而平稳、精确地将飞行器引导至末端能量管理段。通过对速度与能量、高度、轨迹倾角以及待飞航程等状态量建立解析关系,该方法拥有迭代速度快以及收敛性强的优势。仿真结果显示,该方法对输入信息的误差及跳变等不确定因素的适应性很强,在各类干扰情况下较传统方法拥有更高的制导精度。相较于传统轨迹跟踪制导方法,该方法在实际应用背景下显著地提升了制导的自主性与适应性。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号