首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Space flight, microgravity, stress, and immune responses.   总被引:4,自引:0,他引:4  
Exposure of animals and humans to space flight conditions has resulted in numerous alterations in immunological parameters. Decreases in lymphocyte blastogenesis, cytokine production, and natural killer cell activity have all been reported after space flight. Alterations in leukocyte subset distribution have also been reported after flight of humans and animals in space. The relative contribution of microgravity conditions and stress to the observed results has not been established. Antiorthostatic, hypokinetic, hypodynamic, suspension of rodents and chronic head-down tilt bed-rest of humans have been used to model effects of microgravity on immune responses. After use of these models, some effects of space flight on immune responses, such as decreases in cytokine function, were observed, but others, such as alterations in leukocyte subset distribution, were not observed. These results suggest that stresses that occur during space flight could combine with microgravity conditions in inducing the changes seen in immune responses after space flight. The biological/biomedical significance of space flight induced changes in immune parameters remains to be established. Grant Numbers: NCC2-859, NAG2-933.  相似文献   

2.
The issue of predicting solar flares is one of the most fundamental in physics, addressing issues of plasma physics, high-energy physics, and modelling of complex systems. It also poses societal consequences, with our ever-increasing need for accurate space weather forecasts. Solar flares arise naturally as a competition between an input (flux emergence and rearrangement) in the photosphere and an output (electrical current build up and resistive dissipation) in the corona. Although initially localised, this redistribution affects neighbouring regions and an avalanche occurs resulting in large scale eruptions of plasma, particles, and magnetic field. As flares are powered from the stressed field rooted in the photosphere, a study of the photospheric magnetic complexity can be used to both predict activity and understand the physics of the magnetic field. The magnetic energy spectrum and multifractal spectrum are highlighted as two possible approaches to this.  相似文献   

3.
精大贵稀仪器仪表潜在功能的开发,充分利用了现有资源,节省大量的更新经费,产生了巨大的技术、经济效益.在市场经济机制下,开展共用协作,极大地改善了精大贵稀仪器利用率低的状况,且有一定的推广应用前景,为培养、锻炼年轻的技术人员,以点带面地推动人员技术素质的全面提高起了积极的作用.  相似文献   

4.
The RESIK is a high sensitivity, uncollimated bent crystal spectrometer which successfully operated aboard Russian CORONAS-F solar mission between 2001 and 2003. It measured for the first time in a systematic way solar soft X-ray spectra in the four wavelength channels from 3.3 Å to 6.1 Å. This range includes characteristic strong lines of H- and He-like ions of K, Ar, Cl, Si, S and Al in the respective spectral channels. A distinguishing feature of RESIK is its possibility of making reliable measurements of the continuum radiation in flares. Interpretation of line and the continuum intensities observed in vicinity of respective strong lines provides diagnostics of plasma temperature and absolute abundances of K, Ar, Cl, S, Si and Al in several flares. We analyzed the observed intensities of spectral lines and the nearby continuum using the CHIANTI v5.2 atomic data package. A specific, so-called “locally isothermal” approach has been used in this respect allowing us to make not only flare-averaged abundance estimates, but also to look into a possible variability of plasma composition during the course of flares.  相似文献   

5.
The geometries, dipole moments, and rotational constants for several magnesium compounds and their anions were calculated by using the B3LYP/Aug-cc-pVTZ method. The rotational constants of linear forms have been derived to be used for laboratory experiment and astronomical observation.  相似文献   

6.
Like their sighted peers, many blind students in elementary, middle, and high school are naturally interested in space. This interest can motivate them to learn fundamental scientific, quantitative, and critical thinking skills, and sometimes even lead to careers in Science, Technology, Engineering, and Math (STEM) disciplines. However, these students are often at a disadvantage in science because of the ubiquity of important graphical information that is generally not available in accessible formats, the unfamiliarity of teachers with non-visual teaching methods, lack of access to blind role models, and the low expectations of their teachers and parents. We discuss joint efforts by the National Aeronautics and Space Administration (NASA) and the National Federation of the Blind’s (NFB) National Center for Blind Youth in Science (NCBYS) to develop and implement strategies to promote opportunities for blind youth in science. These include the development of tactile space science books and curriculum materials, science academies for blind middle school and high school students, and college-level internship and mentoring programs. The partnership with the NFB exemplifies the effectiveness of collaborations between NASA and consumer-directed organizations to improve opportunities for underserved and underrepresented individuals.  相似文献   

7.
8.
To estimate astronaut health risk due to space radiation, one must have the ability to calculate various exposure-related quantities that are averaged over specific organs and tissue types. Such calculations require computational models of the ambient space radiation environment, particle transport, nuclear and atomic physics, and the human body. While significant efforts have been made to verify, validate, and quantify the uncertainties associated with many of these models and tools, relatively little work has focused on the uncertainties associated with the representation and utilization of the human phantoms. In this study, we first examine the anatomical properties of the Computerized Anatomical Man (CAM), Computerized Anatomical Female (CAF), Male Adult voXel (MAX), and Female Adult voXel (FAX) models by comparing the masses of various model tissues used to calculate effective dose to the reference values specified by the International Commission on Radiological Protection (ICRP). The MAX and FAX tissue masses are found to be in good agreement with the reference data, while major discrepancies are found between the CAM and CAF tissue masses and the reference data for almost all of the effective dose tissues. We next examine the distribution of target points used with the deterministic transport code HZETRN (High charge (Z) and Energy TRaNsport) to compute mass averaged exposure quantities. A numerical algorithm is presented and used to generate multiple point distributions of varying fidelity for many of the effective dose tissues identified in CAM, CAF, MAX, and FAX. The point distributions are used to compute mass averaged dose equivalent values under both a galactic cosmic ray (GCR) and solar particle event (SPE) environment impinging isotropically on three spherical aluminum shells with areal densities of 0.4 g/cm2, 2.0 g/cm2, and 10.0 g/cm2. The dose equivalent values are examined to identify a recommended set of target points for each of the tissues and to further assess the differences between CAM, CAF, MAX, and FAX. It is concluded that the previously published CAM and CAF point distributions were significantly under-sampled and that the set of point distributions presented here should be adequate for future studies involving CAM, CAF, MAX, or FAX. It is also found that the errors associated with the mass and location of certain tissues in CAM and CAF have a significant impact on the mass averaged dose equivalent values, and it is concluded that MAX and FAX are more accurate than CAM and CAF for space radiation analyses.  相似文献   

9.
A Symposium on the Giant Planets and Their Satellites was presented in conjunction with the Twenty-fourth Plenary Meeting of the Committee on Space Research. This paper summarizes the talks presented and places the remaining papers of this volume in context.  相似文献   

10.
The continual monitoring of the low Earth orbit (LEO) debris environment using highly sensitive radars is essential for an accurate characterization of these dynamic populations. Debris populations are continually evolving since there are new debris sources, previously unrecognized debris sources, and debris loss mechanisms that are dependent on the dynamic space environment. Such radar data are used to supplement, update, and validate existing orbital debris models. NASA has been utilizing radar observations of the debris environment for over a decade from three complementary radars: the NASA JPL Goldstone radar, the MIT Lincoln Laboratory (MIT/LL) Long Range Imaging Radar (known as the Haystack radar), and the MIT/LL Haystack Auxiliary radar (HAX). All of these systems are highly sensitive radars that operate in a fixed staring mode to statistically sample orbital debris in the LEO environment. Each of these radars is ideally suited to measure debris within a specific size region. The Goldstone radar generally observes objects with sizes from 2 mm to 1 cm. The Haystack radar generally measures from 5 mm to several meters. The HAX radar generally measures from 2 cm to several meters. These overlapping size regions allow a continuous measurement of cumulative debris flux versus diameter from 2 mm to several meters for a given altitude window. This is demonstrated for all three radars by comparing the debris flux versus diameter over 200 km altitude windows for 3 nonconsecutive years from 1998 to 2003. These years correspond to periods before, during, and after the peak of the last solar cycle. Comparing the year to year flux from Haystack for each of these altitude regions indicate statistically significant changes in subsets of the debris populations. Potential causes of these changes are discussed. These analysis results include error bars that represent statistical sampling errors.  相似文献   

11.
This brief review addresses the relation between solar activity, cosmic ray variations and the dynamics of the heliosphere. The global features of the heliosphere influence what happens inside its boundaries on a variety of time-scales. Galactic and anomalous cosmic rays are the messengers that convey vital information on global heliospheric changes in the manner that they respond to these changes. By observing cosmic rays over a large range of energies at Earth, and with various space detectors, a better understanding is gained about space weather and climate. The causes of the cosmic ray variability are reviewed, with emphasis on the 11-year and 22-year cycles, step modulation, charge-sign dependent modulation and particle drifts. Advances in this field are selectively discussed in the context of what still are some of the important uncertainties and outstanding issues.  相似文献   

12.
Spaceborne lidar measurements and retrievals are simulated using realistic errors in signal, conventional density information, atmospheric transmission, and lidar calibration. We find that by day, independent analysis of returns at wavelengths of 0.53 and 1.06 μm yields vertical profiles (0.1- to 1-km resolution) of tenuous clouds and boundary-layer, Saharan, and strong volcanic stratospheric aerosols to accuracies of 30% or better, provided particulate optical depth does not exceed ?0.3. By night all these constituents are retrieved, plus noctilucent clouds, mesospheric aerosols, and upper tropospheric/nonvolcanic stratospheric (UT/NVS) areosols. Molecular-density uncertainties are a dominant source of error for UT/NVS retrievals.To reduce these errors and also to provide density and temperature profiles, we developed a procedure that combines returns at 0.35 and 1.06 μm. This technique significantly improves UT/NVS aerosol retrieval accuracy and also yields useful density and temperature profiles there. Strong particulate contamination limits the technique to the cloud-free upper troposphere and above.  相似文献   

13.
Multispectral data covering an area near Marysvale, Utah, collected with the airborne National Aeronautics and Space Administration (NASA) 24-channel Bendix multispectral scanner, were analyzed to detect areas of hydrothermally altered, potentially mineralized rocks. Spectral bands were selected for analysis that approximate those of the Landsat 4 Thematic Mapper and which are diagnostic of the presence of hydrothermally derived products. Hydrothermally altered rocks, particularly volcanic rocks affected by solutions rich in sulfuric acid, are commonly characterized by concentrations of argillic minerals such as alunite and kaolinite. These minerals are important for identifying hydrothermally altered rocks in multispectral images because they have intense absorption bands centered near a wavelength of 2.2 μm. Unaltered volcanic rocks commonly do not contain these minerals and hence do not have the absorption bands.A color-composite image was constructed using the following spectral band ratios: 1.6μm/2.2μm, 1.6μm/0.48μm, and 0.67μm/1.0μm. The particular bands were chosen to emphasize the spectral contrasts that exist for argillic versus non-argillic rocks, limonitic versus nonlimonitic rocks, and rocks versus vegetation, respectively. The color-ratio composite successfully distinguished most types of altered rocks from unaltered rocks. Some previously unrecognized areas of hydrothermal alteration were mapped. The altered rocks included those having high alunite and/or kaolinite content, siliceous rocks containing some kaolinite, and ash-fall tuffs containing zeolitic minerals. The color-ratio-composite image allowed further division of these rocks into limonitic and nonlimonitic phases. The image did not allow separation of highly siliceous or hematitically altered rocks containing no clays or alunite from unaltered rocks.A color-coded density slice image of the 1.6μm/2.2μm band ratio allowed further discrimination among the altered units. Areas containing zeolites and some ash-fall tuffs containing montmorillonite were readily recognized on the color-coded density slice as having less intense 2.2-μm absorption than areas of highly altered rocks. The areas of most intense absorption, as depicted in the color-coded density slice, are dominated by highly altered rocks containing large amounts of alunite and kaolinite. These areas form an annulus, approximately 10 km in diameter, which surrounds a quartz monzonite intrusive body of Miocene age. The patterns of most intense alteration are interpreted as the remnants of paleohydrothermal convective cells set into motion during the emplacement of the central intrusive body.  相似文献   

14.
为实现我国首次月球样品无人采样返回任务,设计了嫦娥五号(Chang’E 5)探测器制导、导航与控制(GNC)系统.根据任务要求和探测器特点,GNC系统设计分为轨道器GNC子系统、返回器GNC子系统和着上组合体GNC子系统.给出了嫦娥五号探测器GNC系统的架构设计、工作模式以及在轨飞行结果.结果表明,GNC系统设计正确,成功完成了动力下降、起飞上升、交会对接、返回再入等关键动作,实现了月球表面起飞上升、月球轨道交会对接以及携带月壤以近第二宇宙速度二次再入返回的三项首次任务,各项功能性能满足任务要求.  相似文献   

15.
16.
惜别“卡西尼”   总被引:1,自引:0,他引:1  
正"卡西尼-惠更斯"(Cassini-Huygens)探测器为土星而生。作为一名伟大的星际旅行者,历经7年多次行星借力成功抵达土星,向土卫六释放了"惠更斯"着陆器,完成了主任务和两次扩展任务,获得了大量科学发现,为人类展现了宇宙之奇美。在土星轨道上兢兢业业工作13年后,"卡西尼"轨道器已步入风烛残年。为避免与土卫二、土卫六等带有生命迹象的土星卫星发生碰撞造成污染,"卡西尼"于2017年9月15日扑进土星的怀抱,把自己的全部奉献给了追随一生的土星。在生命最后时刻,"卡西尼"仍发回极具价值的科学数据,以  相似文献   

17.
Coordinated observations using space and ground-based instruments were made of active region complex #2522/2530, 24–30 June, 1980. The 10 largest flares from these regions were of importance M1-M6 in X-rays, and all were observed from satellites, except for one observed from a balloon. Several kinds of buildup signature have been found in the tens of minutes before these flares. Among these signatures are the following: 1) Relative faintness in X-ray lines of the pre-flare pixels, 2) X-ray (5–15 keV) “flashes” at points displaced by 1′–2′ from the flare site, 3) Rising filaments seen in Hα and Ultraviolet 4) Microwave intensification, polarization increase and polarization flip 5) Coronal disturbances above limb flares at or before the impulsive phase.  相似文献   

18.
Gravity missions such as the Gravity field and steady-state Ocean Circulation Explorer (GOCE) are equipped with onboard Global Positioning System (GPS) receivers for precise orbit determination (POD), instrument time-tagging, and the extraction of the long wavelength part of the Earth’s gravity field. The very low orbital altitude of the GOCE satellite and the availability of dense 1 s GPS tracking data are ideal characteristics to exploit the contribution of GPS high-low Satellite-to-Satellite Tracking (hl-SST) to gravity field determination. We present gravity field solutions based on about 8 months of GOCE GPS hl-SST data from 2009 and compare the results with those obtained from the CHAllenging Minisatellite Payload (CHAMP) and Gravity Recovery And Climate Experiment (GRACE) missions. The very low orbital altitude of GOCE significantly improves gravity field recovery from GPS hl-SST data above degree 20, but not for the degrees below 20, where the quality of the spherical harmonic coefficients remains essentially unchanged. Despite the limited time span of GOCE data used, the gravity field of the Earth can be resolved up to about degree 115 using GPS data only. Empirically determined phase center variations (PCVs) of the GOCE onboard GPS helix antenna are, however, mandatory to achieve this performance.  相似文献   

19.
In the general control perspective, the CELSS concept implies a very complex system and presents challenges at every level. These challenges are generated by: (1) the prospect that the system will be inherently unstable, (2) the prospective difficulty of establishing an adequate mathematical model of the system for the purpose of control law synthesis (dimensionality is high, and the dynamics and interactive processes of some of the subsystems are not understood well), (3) assuring control law robustness (assuring that the resulting control law(s) will be effective over the domain of the specified uncertainties), (4) hardware realization of the control law, (5) hardware system robustness ("fault tolerance") and (6) achieving the logistics of the automation (or "management") aspects of the problem. A suggested organization of the problem, a sketch of the issues related to perceived difficulties, a commentary/evaluation of the issues, a review of methods available to address the issues, and a suggested strategy to address the broad CELSS systems control problem are presented.  相似文献   

20.
The ionospheres of the major planets Jupiter, Saturn, and Uranus are reviewed in light of Pioneer and Voyager observations. Some refinements to pre-Voyager theoretical models are required to explain the results, most notably the addition of significant particle ionization from ‛electroglow” and auroral processes and the need for additional chemical loss of protons via charge exchange reactions with water. Water from the Saturn rings has been identified as a major modifier of the Saturn ionosphere and water influx from satellites and/or meteorites may also be important at Jupiter and Uranus as well, as evidenced by the observed ionospheric structure and the identification of cold stratospheric carbon monoxide at Jupiter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号