首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
β-Decay and positron decay are believed to play a consequential role during the late phases of stellar evolution of a massive star culminating in a supernova explosion. The β-decay contributes in maintaining a respectable lepton-to-baryon ratio, Ye, of the core prior to collapse which results in a larger shock energy to produce the explosion. The positron decay acts in the opposite direction and tends to decrease the ratio. The structure of the presupernova star is altered both by the changes in Ye and the entropy of the core material. Recently the microscopic calculation of weak interaction mediated rates on key isotopes of iron was introduced using the proton–neutron quasiparticle random phase approximation (pn-QRPA) theory with improved model parameters. Here I discuss in detail the improved calculation of β±-decay rates for iron isotopes (54,55,56Fe) in stellar environment. The pn-QRPA theory allows a microscopic “state-by-state” calculation of stellar rates as explained later in text. Excited state Gamow–Teller distributions are much different from ground state and a microscopic calculation of decay rates from these excited states greatly increases the reliability of the total decay rate calculation specially during the late stages of stellar evolution. The reported decay rates are also compared with earlier calculations. The positron decay rates are in reasonable agreement with the large-scale shell model calculation. The main finding of this work includes that the stellar β-decay rates of 54,55,56Fe are around 3–5 orders of magnitude smaller than previously assumed and hence irrelevant for the determination of the evolution of Ye during the presupernova phase of massive stars. The current work discourages the inclusion of 55,56Fe in the list of key stellar β-decay nuclei as suggested by former simulation results.  相似文献   

2.
Three recent developments in the field of formation and evolution of neutron stars and black holes in binaries are addressed:
• The finding that there is a class of neutron stars, formed in interacting binaries, that do not receive kick velocities in their birth events. This finding is particularly important for our understanding of the formation – and formation rates – of double neutron stars. It is argued that these low-kick neutron stars, which tend to have low masses, are formed by a different physical mechanism than the neutron stars that receive large kick velocities at birth.

• The occurrence of velocity kicks in the formation events of stellar black holes.

• The nature of the companions of millisecond X-ray pulsars.

Keywords: Astrophysics; X-ray binaries; Neutron stars; Black holes  相似文献   


3.
The Einstein Observatory and the IUE satellite have provided the observational basis for a major restructuring in theories of coronal formation for late-type stars. For the first time, coronal and transition region emission from a large sample of low mass (1 Mo) dwarf stars has been directly observed, with the unexpected result that essentially all such stars are x-ray emitters. The Sun, which was previously assumed to be typical, is now known to be at the low end of the x-ray luminosity function for solar-type stars. K- and M-dwarfs are observed to have nearly the same luminosity distributions as G-dwarfs and all of these spectral types have a large spread in x-ray luminosity.Observationally, there is a strong correlation between the strength of coronal emission in stars with outer convective zones and the rotation rates of these stars. At the present time we have only the beginnings of a satisfactory theoretical explanation for this correlation; although we are beginning to understand the connection between coronal emission strength and the magnetic field, we do not yet understand the stellar dynamo which generates the magnetic field. Studies of the coronal emission of stars may lead to a better understanding of stellar dynamos.  相似文献   

4.
Measurement of at least three independent parameters, for example, mass, radius and spin frequency, of a neutron star is probably the only way to understand the nature of its supranuclear core matter. Such a measurement is extremely difficult because of various systematic uncertainties. The lack of knowledge of several system parameter values gives rise to such systematics. Low mass X-ray binaries, which contain neutron stars, provide a number of methods to constrain the stellar parameters. Joint application of these methods has a great potential to significantly reduce the systematic uncertainties, and hence to measure three independent neutron star parameters accurately. Here, we review the methods based on: (1) thermonuclear X-ray bursts; (2) accretion-powered millisecond-period pulsations; (3) kilohertz quasi-periodic oscillations; (4) broad relativistic iron lines; (5) quiescent emissions; and (6) binary orbital motions.  相似文献   

5.
Observations of cool stars with the Einstein Observatory (HEAO-2) have brought about a fundamental change in our knowledge and understanding of stellar coronae. The existence of X-ray emission from stars throughout the H-R diagram, the wide range of X-ray luminosity within a given spectral and luminosity class, and the strong correlation of X-ray luminosity with stellar age and rotation are among the more significant Einstein results. These results are strong evidence for the influence of stellar dynamo action on the formation and heating of stellar coronae. A discussion of relevant consortium and guest observations will be given. The Hyades cluster, in particular, will serve as an example to demonstrate the usefulness of X-ray observations in the study of stellar activity and coronal evolution.  相似文献   

6.
We present a model for neutrino flares in accreting black holes based on the injection of a non-thermal population of relativistic particles in a magnetized corona. The most important products of hadronic and photohadronic interactions at high energies are pions. Charged pions decay into muons and neutrinos; muons also decay yielding neutrinos. Taking into account these effects, coupled transport equations are solved for all species of particles and the neutrino production is estimated for the case of accreting galactic black holes.  相似文献   

7.
Cool objects glow in the infrared. The gas and solid-state species that escape the stellar gravitational attraction of evolved late-type stars in the form of a stellar wind are cool, with temperatures typically ?1500 K, and can be ideally studied in the infrared. These stellar winds create huge extended circumstellar envelopes with extents approaching 10191019 cm. In these envelopes, a complex kinematical, thermodynamical and chemical interplay determines the global and local structural parameters. Unraveling the wind acceleration mechanisms and deriving the complicated structure of the envelopes is important to understand the late stages of evolution of ∼97% of stars in galaxies as our own Milky Way. That way, we can also assess the significant chemical enrichment of the interstellar medium by the mass loss of these evolved stars. The Herschel Space Observatory is uniquely placed to study evolved stars thanks to the excellent capabilities of the three infrared and sub-millimeter instruments on board: PACS, SPIRE and HIFI. In this review, I give an overview of a few important results obtained during the first two years of Herschel observations in the field of evolved low and intermediate mass stars, and I will show how the Herschel observations can solve some historical questions on these late stages of stellar evolution, but also add some new ones.  相似文献   

8.
Solar and stellar activity is a result of complex interaction between magnetic field, turbulent convection and differential rotation in a star’s interior. Magnetic field is believed to be generated by a dynamo process in the convection zone. It emerges on the surface forming sunspots and starspots. Localization of the magnetic spots and their evolution with the activity cycle is determined by large-scale interior flows. Thus, the internal dynamics of the Sun and other stars hold the key to understanding the dynamo mechanism and activity cycles. Recently, significant progress has been made for modeling magnetohydrodynamics of the stellar interiors and probing the internal rotation and large-scale dynamics of the Sun by helioseismology. Also, asteroseismology is beginning to probe interiors of distant stars. I review key achievements and challenges in our quest to understand the basic mechanisms of solar and stellar activity.  相似文献   

9.
Observation of multiperiodic variability in stars offers a powerful tool to probe their internal structure, rotation and magnetism. This follows from the possibility of identification of observed frequencies with those calculated for realistic stellar models. In spherical stars oscillations are described in terms of two-dimensional discrete sets of acoustic- and gravity-modes. In realistic cases there is no universal relation among the frequencies. Thus, each frequency observed is an independent observable. In recent years comparisons between observed and theoretical frequencies were made for the sun and various variable stars. The most dramatic discrepancy occurs for double-mode Cepheids. Magnetism and/or rotation induce fine structure in the frequency spectrum. The width and structure of multiplets depend on the size of these effects weighted in a specific way for each mode. Recently, oscillation data were used to determine the behavior of the angular velocity inside the sun. For stars only some average rotation rates have been determined in this way.  相似文献   

10.
The general aproach is considered which describs the evolution of neutron stars in terms of their interaction with surrounding matter. All possible states of neutron stars are classified from this point of view. Classification and evolution of binaries contaning neutron stars are also considered.  相似文献   

11.
Kilohertz QPOs have been detected from more than 20 neutron stars in low-mass X-ray binaries. Several different ideas have been proposed for their generation, involving resonances, magnetic interactions, and sharp transitions in the accretion flow. We show that although details are uncertain at this time, it is clear that the stellar magnetic field has a dynamic influence on the accretion flow. We also discuss the inferences about dense matter and strong gravity that can be drawn from all models, and the qualitative advances expected with a future X-ray timing mission.  相似文献   

12.
With the advent of high resolution space observations with high sensitivity, stellar atmospheric research has entered a new phase of rapid development. All stars, and especially hot stars, are now recognized to have atmospheric characteristics that were not suspected before. All hot stars that we can observe with sufficient accuracy show chromospheres and coronae indicative of non-radiative energy fluxes as well as mass loss; these phenomena exhibit a very great range in magnitude among different stars and, in several cases, they are variable in time. These discoveries have pointed out the need for determining the atmospheric structures of hot stars and, ultimately, of determining the mechanisms responsible for the likely common origin of chromospheres-coronae and mass fluxes. This paper will focus on these observational aspects of hot stars -mainly Be stars and OB-normal stars will be treated here- and on the constraints that the observations impose upon models for these stellar atmospheres.  相似文献   

13.
Stellar winds are found in hot and luminous stars of all types. We see evidence of these winds in P Cygni profiles of resonance lines in the UV spectral regions, and obtain density information from them, and from optical emission lines and from free-free radiation in the infrared and radio continua from the ionized plasma. Data recently acquired from the IUE satellite are now sufficient to enable us to outline the broad parameters of these winds. It is found that for the hottest stars, those of 0-type, the mass loss rate ? is proportional to Lα. A proportionality between ? and L is predicted by the theory of radiatively driven winds; the value for α is also anticipated by the details of the theory. The dispersion of individual stellar values may be due to observational uncertainty alone, but it may also suggest that other physical parameters affect the stellar winds. The kinetic energy input of the stellar winds to the interstellar medium is considerable and may, in aggregate, be of the same order as the contribution of supernovae.  相似文献   

14.
Binary or multiple stellar systems, constituting almost a third of the content of the Milky Way, represent a high priority astronomical target due to their repercussions on the stellar dynamical and evolutionary parameters. Moreover the spectral study of such class of stars allows to better constrain the evolutionary theories of the Galactic stellar populations. By resolving the members of stellar systems through photometric observations we are able to perform more detailed measurements to infer their mass. In this paper we investigate the feasibility of a cubesat based mission including an optical payload to directly optically discriminate the members of a selected sample of binary systems. The scientific targets, consisting 11?M class dwarf stars binary systems, have been extracted from the already studied Riaz catalogue. These subset has been selected considering the star distance, the members angular separation, and the distance from the Galactic plane (due to limit the background and foreground contamination). The satellite concept is based on a 6 unit Cubesat embedding some commercial off the shelf components and an ad hoc designed optical payload occupying almost 4 units. The optical configuration has been chosen in order to fit the angular resolution requirements, as derived from the target characteristics. Moreover, according to the optical analysis and the computed field of view some requirements on the attitude control system have been inferred and fulfilled by the component selection. The paper is organized as in the following: a brief scientific introduction is made; consequently the project is described with particular attention to the optical design and the standard sub-systems; finally the conclusions are drawn and the future perspectives are investigated.  相似文献   

15.
Observations using the Rossi X-ray Timing Explorer (RXTE) have discovered dozens of accreting neutron stars with millisecond spin periods in low-mass binary star systems. Eighteen are millisecond X-ray pulsars powered by accretion or nuclear burning or both. These stars have magnetic fields strong enough for them to become millisecond rotation-powered (radio) pulsars when accretion ceases. Few, if any, accretion- or rotation-powered pulsars have spin rates higher than 750 Hz. There is strong evidence that the spin-up of some accreting neutron stars is limited by magnetic spin-equilibrium whereas the spin-up of others is halted when accretion ends. Further study will show whether the spin rates of some accretion- or rotation-powered pulsars are or were limited by emission of gravitational radiation.  相似文献   

16.
Alfvén waves have been invoked as an important mechanism of particle acceleration in stellar winds of cool stars. After their identification in the solar wind they started to be studied in winds of stars located in different regions of the HR diagram. We discuss here some characteristics of these waves and we present a direct application in the acceleration of late-type stellar winds.  相似文献   

17.
The state of subsonic propeller is intermediate between the states of supersonic propeller and accretor in the evolutionary tracks of magnetized compact stars. The rotational rate of a star at this stage decelerates due to the interaction between its magnetosphere and the surrounding hot, quasi-static plasma envelope. The magnetospheric radius is smaller than the corotation radius and the boundary of the magnetosphere is stable with respect to interchange instabilities. The rate of the mass flux from the inner radius of the envelope to the stellar surface is limited by the rate of plasma diffusion into the magnetic field of the star. As a result, the subsonic propeller would appear as a low-luminosity accretion-powered pulsar with a soft X-ray spectrum.  相似文献   

18.
Formation of relativistic jets in the magnetosphere of collapsing stars is considered. These jets will be formed in the polar caps of magnetosphere of collapsing star, where the stellar magnetic field increases during the collapse and the charged particles are accelerated. The jets will generate non-thermal radiation. The analysis of dynamics and emission of particles in the stellar magnetosphere under collapse shows that collapsing stars can be powerful sources of relativistic jets.  相似文献   

19.
Observations of a large number of different oscillation frequencies in the Sun provide an opportunity for detailed testing of the theory of stellar structure and evolution. At present highly significant discrepancies remain between observed and computed frequencies, and so our models of the solar interior have to be modified. With further improvements in the observations it might become possible to make a direct empirical determination of the density structure throughout the Sun.Similar oscillations have so far not been detected in other stars, but attempts to do so are under way. Theoretical estimates indicate that amplitudes somewhat greater than for the Sun might be expected for early F stars on the main sequence, and that the amplitude increases rapidly with decreasing gravity. Observation of such oscillations would enable investigations of the structure of these stars, and would in addition provide valuable information about the excitation mechanism of the oscillations.  相似文献   

20.
Stars that explode as Type I Supernovae (SNI) are white dwarfs with masses practically equal to the Chandrasekhar limit Mch. These white dwarfs forme either as a result of gas overflow onto a degenerate component in a binary system or due to the evolution of nuclei of the stars whose mass, on the main sequence, was 3 to 7 Mo. The masses of their nuclei are quite close to Mch. It is convenient to consider three types of stellar evolution 1) “hyperbolic”: masses of nuclei formed as a result of evolution are > Mch; such evolution ends in a Type II Supernova (SNII) outburst; 2) “parabolic” - masses of nuclei ≈ Mch, with the evolution ending in an SNI outburst; 3) “elliptical” with nuclei masses < Mch. The latter type of evolution leads to the formation of planetary nebulae and white dwarfs. A new hypothesis is suggested that explains more frequent occurrence of SNI in irregular galaxies by flashes of star formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号