首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 449 毫秒
1.
The cosmic ray ground level enhancement on January 20, 2005 is among the largest recorded events in the history of cosmic ray measurements. The solar protons of MeV energies cause an excess of ionization in the atmosphere, specifically over polar caps following major solar disturbances. The ionization effect in the Earth atmosphere is obtained for various latitudes on the basis of solar proton energy spectra, reconstructed from GOES 11 measurements and subsequent full Monte Carlo simulation of cosmic ray induced atmospheric cascade. The estimation of ionization rates is based on a numerical model for cosmic ray induced ionization. The evolution of atmospheric cascade is performed with the CORSIKA 6.52 code using FLUKA 2006b and QGSJET II hadron interaction models. The atmospheric ion rate ionization is explicitly obtained for 40°N, 60°N and 80°N latitudes. The time evolution of obtained ion rates is presented. It is demonstrated that ionization effect is negative for 40°N and small for 60°N, because of accompanying Forbush decrease. The ionization effect is significant only in sub-polar and polar atmosphere during the major ground level enhancement of 20 January 2005.  相似文献   

2.
The radiation environment in the troposphere of the Earth is governed by cosmic rays of galactic and solar origin. During major solar energetic particles events the radiation environment changes dramatically. As a results the risk of biological effects due to exposure to ionizing radiation of aircrew increases. Here we present a numerical model for computation of absorbed dose in air due to cosmic rays of galactic and solar origin. It is applied for computation of radiation environment at flight altitude in the equatorial region during several major ground level enhancements, namely GLE65 on 28 October 2003, GLE69 on 20 January 2005 and GLE70 on 13 December 2006. The model is based on a full Monte Carlo simulation of cosmic ray induced atmospheric cascade. The cascade simulation is carried out with CORSIKA 6.990 code with corresponding hadron generators FLUKA 2011 and QGSJET II. The contribution of different cascade components, namely electromagnetic, hadron and muon is explicitly obtained. The spectra of arriving solar energetic particles are calculated from ground level measurements with neutron monitors and satellite data from GOES. The obtained results are discussed.  相似文献   

3.
The influence of high energy particles, specifically cosmic rays, on atmospheric physics and chemistry is highly discussed. In most of the proposed models the role of ionization in the atmosphere due to cosmic rays is not negligible. Moreover, effect(s) on minor constituents and aerosols are recently observed, specifically over the polar regions during strong solar particle events. According to the recent findings for such effects it is necessary an essential increase of ion production, specifically during the winter period. The galactic cosmic rays are the main source of ionization in the Earth’s stratosphere and troposphere. Occasionally, the atmospheric ionization is significantly enhanced during strong solar energetic particles events, specifically over the polar caps. During the solar cycle 23 several strong ground level enhancements were observed. One of the strongest was the Bastille day event occurred on 14 July 2000. Using a full Monte Carlo 3-D model, we compute the atmospheric ionization, considering explicitly the contribution of cosmic rays with galactic and solar origin, focusing on high energy particles. The model is based on atmospheric cascade simulation with the PLANETOCOSMICS code. The ion production rate is computed as a function of the altitude above the sea level. The ion production rate is computed on a step ranging from 10 to 30?min throughout the event, considering explicitly the spectral and angular characteristics of the high energy part of solar protons as well as their time evolution. The corresponding event averaged ionization effect relative to the average due to galactic cosmic rays is computed in lower stratosphere and upper troposphere at various altitudes, namely 20?km, 15?km, 12?km and 8?km above the sea level in a sub-polar and polar regions. The 24h and the weekly ionization effects are also computed in the troposphere and low stratosphere. Several applications are discussed.  相似文献   

4.
Cosmic radiation bombards us at high altitude with ionizing particles; the radiation has a galactic component, which is normally dominant, and a component of solar origin. Cosmic ray particles are the primary source of ionization in the atmosphere above 1 km; below 1 km radon is a dominant source of ionization in many areas.  相似文献   

5.
The cosmic ray ionization source functions which were obtained using a simplified extensive air shower model are used to calculate the eleven year cycle, seasonal and diurnal variations of ionization rate in the low and middle atmosphere. The ionization source function, as a function of the penetrating depth and the energy of cosmic ray particles, is the ionization rate per unit depth for a unit flux of incoming cosmic ray particles with certain energy.The calculation of the eleven year cycle variation of ionization rate in the low and middle atmosphere due to the modulation of galactic cosmic ray intensity by solar activity shows that the amplitude is larger at a higher magnetic latitude and is generally larger at higher altitudes. The relative amplitude of fluctuation of the ionization peak value (at altitudes near 15 km) is up to 45% in the magnetic polar region. The ionization rate, due to the seasonal variation of the atmospheric density, varies from several per cent below the ionization peak to several tens per cent above the peak. This seasonal variation of ionization rate reaches 35% at 70 km. The diurnal variation of atmospheric densities caused by atmospheric tidal oscillation can produce a diurnal variation of the ionization rate to an amplitude of several per cent at altitudes above 40 km. The diurnal oscillation is less than 1% below 35 km.  相似文献   

6.
本文对CIRA 1972 模式下的中、低层大气密度季变化所造成的电离率的季变化作了理论计算, 利用宇宙线电离源函数对全球中、低层大气的电离率作了数值计算.计算结果表明, 在70km以下的大气电离率的季变化幅度为百分之几十.在电离峰值高度(约15km)以下幅度为约百分之十, 高度越高变幅越大, 到70km处达35%.在20km以上电离率的季变化趋势与大气密度的季变化趋势大致相同, 夏季比冬季大, 20km以下变化稍为复杂.   相似文献   

7.
为实时评估0~100km高度范围内的大气中子全球分布,对宇宙线在地磁场和大气中的传输过程进行了分析.利用蒙特卡罗方法工具包Geant4,预先计算不同能量的粒子在大气层中产生的次级粒子能谱分布,形成大气次级粒子数据库,并与相关模型进行对比,验证了该数据库的有效性和可靠性.以实测或预报的空间环境参数作为输入,计算同步轨道银河宇宙线和太阳质子事件能谱以及100km高度上的地磁垂直截止刚度,最终得到大气层顶上的粒子能谱.通过对大气次级粒子数据库的线性插值,实现1h分辨率的大气中子能谱和辐射剂量全球分布的实时计算.   相似文献   

8.
Acoustic-gravity waves (AGWs) observed in the upper atmosphere may be generated near the Earth’s surface due to a variety of meteorological sources. Two-dimensional simulations of vertical propagation and breaking of nonlinear AGWs in the atmosphere are performed. Forcing near the Earth’s surface is used as the AGW source in the model. We use a numerical method based on finite-difference analogues of fundamental conservation laws for solving atmospheric hydrodynamic equations. This approach selects physically correct generalized solutions of the wave hydrodynamic equations. Numerical simulations are performed in a representative region of the Earth’s atmosphere up to altitude 500 km. Vertical profiles of temperature, density, molecular viscosity and heat conductivity were taken from the standard atmosphere model MSIS-90 for January. Calculations were made for different amplitudes and frequencies of lower boundary wave forcing. It is shown that after activating the tropospheric wave forcing, the initial pulse of AGWs may very quickly propagate to altitudes of 100 km and above and relatively slowly dissipate due to molecular viscosity and heat conduction. This may increase the role of transient nonstationary waves in effective energy transport and variations of atmospheric parameters and gas admixtures in a broad altitude range.  相似文献   

9.
Various balloon systems intended as scientific platforms to float in the atmosphere of Venus at altitudes between about 35 and 65 km are briefly reviewed. Previous predictions of the altitude oscillations of balloons filled with helium gas and water vapor are largely confirmed through numerical simulation and analysis. The need for refined thermal modelling is emphasised. Several novel technical concepts are introduced. It is concluded that phase change balloons would be more suitable than non-condensing super pressure gas balloons when repeated altitude excursions are a mission requirement.  相似文献   

10.
The processes leading to enhancements in mid latitude nitric oxide (NO) densities following geomagnetic storms have been investigated using the University College London (UCL) Coupled Middle Atmosphere and Thermosphere (CMAT) general circulation model. A comparison of calculated storm time and quiet time NO densities at 110 km altitude reveals the presence of aurorally produced NO at both high and mid latitudes for several days after subsidence of activity. At 150 km, the NO enhancements are shorter lived and remain for up to approximately 2 days after the storm. By separating the contribution of chemical production and loss, horizontal and vertical advection, and molecular and eddy diffusion in the calculation of NO densities, we show that at 150 km altitude, horizontal transport must be taken into consideration if post-storm mid latitude enhancements are to be reproduced. Chemical production of NO at high latitudes continues for up to 2 days after subsidence of a storm at altitudes of around 150 km. We show that equatorward winds at this altitude are sufficiently strong to transport the aurorally produced NO to mid latitudes. Vertical diffusion transports NO from altitudes of 150 km and above, to lower altitudes where it is longer lived. At 110 km altitude, chemical, diffusive and advective terms must all be included in the calculation of NO density in order to simulate realistic mid latitude enhancements. We propose that it is the combined effects of increased chemical production, downward diffusion from altitudes of 150 km and above, and transport by winds that lead to increases in mid latitude NO density at altitudes of around 110 km. This is the first detailed study of the causes of post-storm mid latitude NO enhancements to use a three-dimensional general circulation model.  相似文献   

11.
The galactic cosmic rays (GCR) are the main ionization source at altitude of ∼3–35 km in the atmosphere. For high latitude anomalous cosmic ray (ACR) component has also a significant influence on the atmospheric ionization. We propose an empirical model for differential spectra D(E) of galactic and anomalous cosmic rays in energy interval 1 MeV–100 GeV during solar cycle. In the model data are used which cover three solar cycles: 20, 22 and 23. The LEAP87, IMAX92, CAPRICE94, AMS98 and BESS experimental spectra for protons and alpha particles are fitted to the proposed empirical model. The modulated GCR differential spectra are compared with force-field approximation to the one-dimensional transport equation and with solutions of two-dimensional cosmic ray transport equation. For experimental spectra, the calculation of the model parameters is performed by Levenberg–Marquardt algorithm, applied to the special case of least squares. Algorithm that combines the rapid local convergence of Newton–Raphson method with globally convergent method for non-linear systems of equations is applied for theoretically obtained differential spectra. The described programmes are realized in algorithmic language C++. The proposed model gives practical possibility for investigation of experimental data from measurements of galactic cosmic rays and their anomalous component.  相似文献   

12.
We present Monte Carlo simulations of the energy deposited by energetic electrons from the outer Van Allen belt precipitating into the atmosphere below 100 km. Consideration of the possible mechanism for the precipitation of outer belt electrons suggests that the electrons should be moving nearly horizontally when the enter the atmosphere; therefore we simulate and compare the precipitation of close to horizontally moving, vertically moving, and isotropically distributed electrons. We find that there should be a number of observable differences between the energy deposition for these different angular distributions of electrons.  相似文献   

13.
A multi-objective optimization procedure to design parachute triggering algorithm, based on Monte Carlo analysis of flight uncertainties, has been developed in this paper. Most of Mars explorations missions utilize parachute for a safe descent through the lowest of the atmosphere. The parachute triggering algorithm is designed to accommodate the range of off-nominal entry trajectories, and is aimed to parachute opening in certain range of Mach numbers, dynamic pressure and altitude. Our novel algorithm takes the fight uncertainty into the account through Monte Carlo analysis, selects maximization of altitude statistical mean and minimization of Mach number statistical mean as two objectives, then employs multi-objective evolutionary algorithm based on decomposition (MOEA/D), to search the Pareto-front framework. Such a methodology can be implemented on the future design of entry, descent, and landing (EDL) mission.  相似文献   

14.
本文在考虑大气密度(90km高度以下) 随地理纬度、高度及时间(月份)随机变化的基础上,沿卫星的返回轨道建立了随机大气密度的统计模型。并应用该模型产生的随机大气密度样本,进行返回轨道的Monte Corlo法模拟计算。通过对模拟计算得到的返回轨道参数样本的统计处理,本文分析了大气密度变化对卫星返回轨道参数的影响。另外,本文还介绍了近似估计大气密度变化对返回轨道参数影响的影响系数法。  相似文献   

15.
We present the results of a streamer-fluid model used to investigate the electrodynamical coupling between the troposphere and upper atmosphere due to the penetration of lightning electric fields into the mesosphere and the lower ionosphere, generating sprites. The model solves the continuity equation for electrons and ions coupled to Poisson equation. The dominant physical response of the atmosphere is the formation of a screening-ionization wave. The wave shields the atmosphere above it from the action of the lightning field and, together with the conductivity reduction below it due to attachment, the wave amplifies the total field below it, allowing for the penetration of intense electric fields in the mesosphere as it propagates downwards into regions of higher density that compress the wave. This is the key physical mechanism for sprite inception. We evaluated the effects of the thundercloud charge geometry, lightning current waveshape, atmospheric conductivity, via different electron density profiles, and the effect of ionization, attachment and electron mobility coefficients in the electrical breakdown process, related to halo production, and sprite streamer initiation. The results showed that electrons with higher mobility are more efficient in shielding the lightning electric field before breakdown, causing delay, and they contribute to the formation of the streamer seed after breakdown, anticipating the sprite streamer inception. Similarly, a higher effective ionization rate, produced by modifications in the attachment and ionization coefficients, anticipates sprite inception. The simulations with 6 different electron density profiles, and therefore conductivities, spanning 4 orders of magnitude, showed that the altitude of breakdown and sprite initiation, as well as their time delays from the lightning discharge are directly related to atmospheric conductivity: higher conductivities produce halo and sprite inception at lower altitudes with longer delays and may hinder sprite formation. We document that variations of 30 times in the lightning current leads to sprite initiation altitudes in the range 66.0–73.5 km, with delays between 1.550 and 34.500 ms, while variations of 4 orders of magnitude in the conductivity profile lead to initiation altitudes 61.0–70.6 km, with delays in the range 3.825–9.825 ms. Consequently, we suggest that lightning characteristics dominate over atmospheric parameters in determining sprites’ initiation altitude and delay. The simulation of a −CG, with a constant current of 30 kA, did not produce a sprite seed, confirming an asymmetry in the response of the atmosphere to positive and negative lightning. This is due to the free electron drift direction that is away from the screening ionization wave, preventing the formation of the streamer seed for the great majority of −CGs. The same does not apply to halos, which depend on the occurrence of breakdown and can be produced by discharges of both polarities.  相似文献   

16.
摘要: 针对脉冲等离子体推力器(PPT)的放电过程,利用粒子网格 蒙特卡洛(PIC MCC)方法建立仿真计算模型.以LES 6 PPT为例,加入电离碰撞进行电离仿真.通过粒子运动碰撞与电磁场耦合仿真计算得到电流与电路总电阻的变化规律,揭示了PPT放电过程中等离子体密度分布情况.通过对比不加入粒子预分布与加入粒子预分布的两种条件下的计算结果,得到了加入粒子预分布使带电粒子密度计算结果更接近实验结果的结论.根据PPT的工作过程,在放电之前推力器内存在等离子体,所以在仿真研究中应进行粒子的预分布.文中的研究方法对PPT的粒子方法模拟具有一定的参考意义.  相似文献   

17.
We have developed a method to evaluate the spectrum of solar energetic protons at the top of the Earth’s atmosphere from the measurements of our balloon cosmic ray experiment. By using the Monte Carlo PLANETOCOSMICS code based on Geant4 we compute the interaction of solar protons [10 MeV–10 GeV] with the Earth’s atmosphere. We obtain the angular and energy distributions of secondary particles (p, e, e+, photons, muons) at different atmospheric levels as a function of primary proton spectra. By comparing the calculated depth dependence of the particle flux with the data obtained by our balloon experiment we can deduce the parameters of the solar proton spectrum that best fit the observations. In this paper we discuss our solar proton spectrum estimation method, and present results of its application to selected solar proton events from 2001 to 2005.  相似文献   

18.
Upper atmospheric CO above 24 km has been observed over Poker Flat (147°W, 65°N, altitude 0.61 km), Alaska using ground-based solar absorption infrared spectroscopy. This is the first reported detection of stratospheric–mesospheric CO using this method from the ground. The results clearly indicate that there is a seasonal variation of the CO profile with enhanced abundances in spring while remaining low from May onwards.The Poker Flat Research Range is one of the many measurement sites that constitute the Network for the Detection of Stratospheric Change (NDSC). The method used in this work, estimating the CO partial column abundances above the middle stratosphere, can be applied to spectra observed using FTIR spectrometry at many other NDSC sites. This suggests the availability of this established technique as a new method for CO measurements in the upper atmosphere.  相似文献   

19.
Global Positioning System (GPS) receiver on the CHAllenging Mini-satellite Payload (CHAMP) and the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, one of four on board the TIMED satellite, provide middle atmosphere temperature profiles by Radio Occultation (RO) and limb viewing infrared emission measurements, respectively. These temperature profiles retrieved by two different techniques in the stratosphere are compared with each other using more than 1300 correlative profiles in March, September and December 2005. The over-all mean differences averaged over 15 and 35 km are approximately −2 K and standard deviation is less than 3 K. Below 20 km of altitude, relatively small mean temperature differences ∼1 K are observed in wide latitudinal range except for June (during the SABER nighttime observation). In the middle to low latitudes, between 30°S and 30°N, the temperature difference increases with height from ∼0–1 K at 15 km, to ∼−4 K at 35 km of altitude. Large temperature differences about −4 to −6 K are observed between 60°S and 30°N and 31–35 km of altitude for all months and between 0° and 30°N below 16 km during June (nighttime).  相似文献   

20.
It is shown the development and preliminary results of operational ionosphere dynamics prediction system for the Brazilian Space Weather program. The system is based on the Sheffield University Plasmasphere–Ionosphere Model (SUPIM), a physics-based model computer code describing the distribution of ionization within the Earth mid to equatorial latitude ionosphere and plasmasphere, during geomagnetically quiet periods. The model outputs are given in a 2-dimensional plane aligned with Earth magnetic field lines, with fixed magnetic longitude coordinate. The code was adapted to provide the output in geographical coordinates. It was made referring to the Earth’s magnetic field as an eccentric dipole, using the approximation based on International Geomagnetic Reference Field (IGRF-11). During the system operation, several simulation runs are performed at different longitudes. The original code would not be able to run all simulations serially in reasonable time. So, a parallel version for the code was developed for enhancing the performance. After preliminary tests, it was frequently observed code instability, when negative ion temperatures or concentrations prevented the code from continuing its processing. After a detailed analysis, it was verified that most of these problems occurred due to concentration estimation of simulation points located at high altitudes, typically over 4000 km of altitude. In order to force convergence, an artificial exponential decay for ion–neutral collisional frequency was used above mentioned altitudes. This approach shown no significant difference from original code output, but improved substantially the code stability. In order to make operational system even more stable, the initial altitude and initial ion concentration values used on exponential decay equation are changed when convergence is not achieved, within pre-defined values. When all code runs end, the longitude of every point is then compared with its original reference station longitude, and differences are compensated by changing the simulation point time slot, in a temporal adjustment optimization. Then, an approximate neighbor searching technique was developed to obtain the ion concentration values in a regularly spaced grid, using inverse distance weighting (IDW) interpolation. A 3D grid containing ion and electron concentrations is generated for every hour of simulated day. Its spatial resolution is 1° of latitude per 1° of longitude per 10 km of altitude. The vertical total electron content (VTEC) is calculated from the grid, and plotted in a geographic map. An important feature that was implemented in the system is the capacity of combining observational data and simulation outputs to obtain more appropriate initial conditions to the ionosphere prediction. Newtonian relaxation method was used for this data assimilation process, where ionosonde data from four different locations in South America was used to improve the system accuracy. The whole process runs every day and predicts the VTEC values for South America region with almost 24 h ahead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号