首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 156 毫秒
1.
引气对跨声轴流压气机性能的影响   总被引:6,自引:0,他引:6  
以单级跨声轴流压气机NASA Stage35为研究对象,根据影响转子和静子通道流动的主要物理现象分别设计了多种引气方案.通过数值模拟比较分析引气与不引气状态下压气机的详细流场,结合实验测量结果,研究转子机匣端壁引气位置以及静子机匣端壁引气量对压气机性能及流场的影响.结果表明:转子机匣端壁引气能够有效控制间隙泄漏流的发展,减小叶尖损失,提升压气机性能.不同的引气槽结构和轴向位置对间隙流动的影响机理不相同;静子机匣端壁引气能够有效减小静子叶排损失,提升压气机效率.   相似文献   

2.
风扇/增压级带间隙三维粘性流场数值模拟   总被引:8,自引:0,他引:8  
使用三维数值模拟软件NUMECA(Numerical Mechanics Application)对双涵道风扇/增压级带转子叶尖间隙的粘性流场进行了三维定常流动数值模拟,获得了其设计转速下的流场特性.结果显示,随着外涵背压的升高,风扇顶部激波后阻塞区周向和轴向尺寸增大,激波变形加剧,继续提高外涵压比,则外涵效率和进出口流量下降.内涵背压的升高,使内涵各转子叶片顶部的泄漏流动影响范围向上游扩散.内涵背压过高,效率和进出口流量同样会有下降的趋势.同时通过和实验结果的比较表明,数值模拟软件模拟的风扇/增压级的三维定常粘性流场能够较真实的反映出转子叶尖间隙泄漏流场的结构特征,以及间隙对流场参数的影响.   相似文献   

3.
压气机间隙流与处理机匣作用的三维数值分析   总被引:16,自引:0,他引:16  
利用Numeca CFD对某一压气机静子叶栅的间隙流动进行流场计算,并将其与具有圆弧斜槽处理结构的间隙及流场计算结果进行对比、分析.详细揭示了叶栅顶部间隙区及处理槽内的流动特征.结果表明,通过采用机匣处理,改变了压气机气流流路,形成叶尖漏流的通道,减少漏流下洗对叶片通道造成的阻塞.叶尖附近主流在叶盆尾缘气流高压作用下进入斜槽,而后气流在叶背前缘以高速由斜槽射入主流,该高速射流有效地扫除叶尖易失速的附面层,从而延迟气流分离,扩大压气机的失速裕度并减少二次流损失.这种籍助于动量交换而形成高速射流对主流的作用可能是机匣开槽结构改善失速裕度的主要原因.   相似文献   

4.
开发了三维数值模拟程序研究轴流跨音转子叶尖间隙流动,应用高雷诺数k-ε湍流模型加壁面函数的方法,计算了轴流跨音转子NASA Rotor37在设计转速下的流场.叶尖间隙采用分区的H型网格和主流区连续对接耦合计算,没有用间隙模型,也没有考虑Vena收缩效应而减小间隙量.在用有限体积法对Navier-Stokes方程和湍流方程进行空间离散的过程中采用了交错网格的方法将N-S方程与湍流方程紧密地耦合在一起,从而提高了计算精度.计算结果和实验数据进行了详细的比较和分析.结果表明,中部叶展具有与实验结果非常一致的流场特征,根、尖区流场则因涡粘假设和激波问题的存在而使流动细节与实验结果略有偏差.  相似文献   

5.
激波噪声是大涵道比涡扇发动机噪声的主要来源。为降低风扇/压气机叶片叶尖产生的激波噪声,对轴向亚音、相对超音的基元级叶型前缘脱体激波系进行研究。基于几何Hermit差值法(GHI)思想,提出一种3段式贝塞尔(Bezier)曲线构造曲率连续前缘叶型的方法,在完成改型设计时拥有更高的自由度。通过改变前缘上3段Bezier曲线间过渡点位置,探究局部曲率优化、整体曲率优化及带厚度补偿的改型方式对前缘处外伸激波强度和激波噪声的影响。通过对比研究不同数值模拟,结果表明:曲率连续前缘设计能减小叶型前缘处过膨胀区大小,减小由此产生的逆压梯度;局部曲率优化和整体曲率优化的方式能够分别在距前缘1倍弦长处降低噪声1.6 dB和4.6 dB。  相似文献   

6.
静叶角度调节对组合压气机性能优化机理   总被引:1,自引:0,他引:1  
采用流线曲率法求解组合压气机的准三维流场,在叶片排前后缘及中间设置计算站,使用样条函数拟合流线;根据组合压气机结构特点,发展了适合其特性计算的损失、落后角模型及计算程序;将特性计算程序与导、静叶角度优化调节方案相结合,确定出不同设计转速下,导、静叶最佳调节角度组合.在90%设计转速,近最高效率点处,利用全三维的数值模拟手段分析了组合压气机导、静叶最佳角度调节前后流场结构变化.研究结果表明:导、静叶角度调节削弱了压气机叶片排中的激波强度,减少了损失,同时能抑制气流的分离,明显改善组合压气机的流场结构.   相似文献   

7.
对旋风扇不同转速匹配对失速关键级影响实验   总被引:1,自引:1,他引:0  
对低速对旋风扇/压气机级的理论分析表明,对旋转子的失速关键级取决于失速时前后级的流量系数以及前后级固有的临界流量系数.前后级的转速匹配会改变前后级的流量系数,进而改变对旋风扇的失速关键级.在一台低速轴流对旋风扇上进行了不同转速匹配的实验,实验结果验证了这一结论.该实验通过改变前后级转速来研究不同转速比情况下的对旋压气机失速特性.实验中分别测量了前后级在100%,90%,80%,70%,60%,50%转速下,共计36组数据.实验结果表明,在设计转速下第2级转子为失速关键级,并且可以通过调整前后级的转速比来改变失速关键级.另外,在失速时如果前级转子流量系数接近临界值,可以得到明显的失速迟滞回线,否则无法得到迟滞回线.   相似文献   

8.
某涡喷发动机数值建模与改型设计   总被引:1,自引:0,他引:1  
基于面向对象的部件级航空发动机性能计算模块,构建了某无人机用小型涡轮喷气式发动机的稳态性能计算模型,并根据该发动机原始性能实验数据,对构建的计算模型进行了可信度校核.在模型校核的基础上,为提高该发动机在不同任务载荷下的功能适用性,利用部件匹配技术对该涡轮喷气式发动机提出了可行性改型设计方案.计算结果表明,在维持该涡喷发动机离心压气机工作线不变,同时保证热强度和结构强度可靠性的条件下,改进组合压气机中的轴流级压气机,可以使该发动机推力有较大提高,耗油率得到有效降低.   相似文献   

9.
旋转状态下涡轮叶片前缘的流动与换热   总被引:4,自引:0,他引:4  
用数值模拟的方法对旋转状态下涡轮叶片前缘冷却结构进行了数值研究,该结构由进气腔、叶片尾缘块和前缘块构成,对此结构不同的旋转速度情况进行了计算,根据计算结果分析了旋转对涡轮叶片前缘流动与换热的影响.计算结果表明,旋转状态下带气膜出流的冲击流动中,前尾缘冲击面的换热随着转速的增加而减小,且尾缘冲击面的换热比前缘冲击面的换热要好;同时前尾缘冲击面换热的差别随着转速的增加将越来越小.  相似文献   

10.
基于S-A湍流模型的全三维数值模拟方法,对带间隙的大小叶片和常规直叶栅亚音泄漏流动进行了计算与分析.结果表明:短弦长小叶片对大叶片吸力面负荷分布、泄漏量以及泄漏涡的产生位置的控制作用较弱;攻角增大后,大叶片泄漏发展到小叶片尖隙导致二次泄漏,恶化叶栅性能;当小叶片靠近吸力面时表现的更为强烈;存在壁面移动时,二次泄漏更容易发生,但间隙流动得到改善;由于攻角变化导致了大叶片泄漏与小叶片尖隙干扰位置变化,表现出不同的叶尖流动模式.   相似文献   

11.
旋转叶片尾缘通道的换热特性   总被引:1,自引:0,他引:1  
用实验的方法研究了旋转和静止状态下带交错肋和柱肋的涡轮叶片尾缘通道的换热特性.通道截面为楔形,交错肋段上下表面肋错开布置,节距比约为7,柱肋段包含大小两排扰流柱.在实验雷诺数为6 100~33 000,旋转数0~0.6的工况下对比分析了尾缘通道交错肋段和柱肋段的旋转静止换热特性.研究结果表明:静态下,交错肋段前后缘面存在换热差异,且该差异沿程减小;在交错肋充分发展段,旋转增强了后缘面的换热,削弱了前缘面的换热;交错肋段前后缘面叶间处换热旋转下均得到增强;旋转下柱肋段的过渡段尺度减小,换热最强点向低半径处偏移.  相似文献   

12.
为了探究螺旋桨滑流对低雷诺数菱形翼布局太阳能无人机气动特性的影响,采用动量源方法(MSM)与k-kL-ω转捩模型求解雷诺平均Navier-Stokes(RANS)方程对不同转速状态下菱形翼布局太阳能无人机的气动特性进行了准确模拟。并通过对比机翼表面流场结构与压力分布,分析了不同迎角下螺旋桨转速变化对菱形翼布局前后翼气动干扰的机理。研究表明:随着螺旋桨转速增大,小迎角下增升减阻效果明显,最大升阻比在3 000 r/min时提升了18.4%。在小迎角时,前翼气流受到抽吸作用,升力增加,后翼受螺旋桨旋转气流影响,前缘出现大范围吸力区,压差阻力减小。在大迎角时,前翼影响不变,后翼前缘下表面吸力区范围及强度均减弱,前缘负升力区消失,增升效果改善,压差阻力增加。由于在不同迎角时,升力增量的主要贡献部件不同,导致无人机纵向静稳定裕度随着转速的提升而增大。菱形翼布局太阳能无人机通过合理设置螺旋桨位置与转速,可有效利用螺旋桨滑流提升气动性能。   相似文献   

13.
针对传统机械压汽蒸馏的不足,提出分离式机械压汽蒸馏系统.建立了一套容量为1.5 m3/d的单效分离式机械压汽蒸馏系统并对其进行实验研究.实验系统主要由两套旋转蒸发器、冷凝器以及压缩机组成.通过改变压缩机转速和蒸发温度来研究系统的性能.结果表明在蒸馏水产量一定的前提下压缩机进口压力和冷凝器进口压力随着压缩机转速的增加而逐渐下降,换热温差随着压缩机转速的增加而增加,最高温差稳定在8.5℃左右.通过改变系统的真空度获得不同的蒸发温度,蒸发温度越高,蒸馏产量越高,系统性能也越好.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号