首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Monthly median values of hourly total electron content (TEC) is obtained with GPS at a station near northern anomaly crest, Rajkot (geog. 22.29°N, 70.74°E; geomag. 14.21°N, 144.9°E) to study the variability of low latitude ionospheric behavior during low solar activity period (April 2005 to March 2006). The TEC exhibit characteristic features like day-to-day variability, semiannual anomaly and noon bite out. The observed TEC is compared with latest International Reference Ionosphere (IRI) – 2007 model using options of topside electron density, NeQuick, IRI01-corr and IRI-2001 by using both URSI and CCIR coefficients. A good agreement of observed and predicted TEC is found during the daytime with underestimation at other times. The predicted TEC by NeQuick and IRI01-corr is closer to the observed TEC during the daytime whereas during nighttime and morning hours, IRI-2001 shows lesser discrepancy in all seasons by both URSI and CCIR coefficients.  相似文献   

2.
In this research, as part of working towards improving the IRI over equatorial region, the total electron content (TEC) derived from GPS measurements and IRI-2007 TEC predictions at Chumphon station (10.72°N, 99.37°E), Thailand, during 2004–2006 is analyzed. The seasonal variation of the IRI-2007 TEC predictions is compared with the TEC from the IRI-2007 TEC model with the option of the actual F2 plasma frequency (foF2) measurements as well as the TEC from the GPS and International GNSS service (IGS). The Chumphon station is located at the equatorial region and the low latitude of 3.22°N. For a declining phase of the solar cycle (2004–2006), the study shows that the IRI-2007 TEC underestimates the IRI-2007 TEC with the foF2 observation at the nighttime by about 5 TECU. The maximum differences are about 15 TECU during daytime and 5 TECU during nighttime. The overestimation is more evident at daytime than at nighttime. When compared in terms of the root-mean square error (RMSE), we find that the highest RMSE between GPS TEC and IRI 2007 TEC is 14.840 TECU at 1230 LT in 2004 and the lowest average between them is 1.318 TECU at 0630 LT in 2006. The noon bite-out phenomena are clearly seen in the IRI-2007 TEC with and without optional foF2 measurements, but not on the GPS TEC and IGS TEC. The IRI TEC with optional foF2 measurements gives the lowest RMSE values between IRI TEC predicted and TEC measurement. However, the TEC measurements (GPS TEC and IGS TEC) are more correct to use at Chumphon station.  相似文献   

3.
This paper presents an analysis of the Total Electron Content (TEC) derived from the International GNSS Service receiver (formerly IGS) at Malindi (2.9°S, 40.1°E), Kenya for the periods 2004–2006 during the declining phase of solar cycle 23. The diurnal, monthly and seasonal variations of the TEC are compared with TEC from the latest International Reference Ionosphere model (IRI-2007). The GPS–TEC exhibits features such as an equatorial noon time dip, semi-annual variations, Equatorial Ionization Anomaly and day-to-day variability. The lowest GPS–TEC values are observed near the June solstice and September equinox whereas largest values are observed near the March equinox and December solstice. The mean GPS–TEC values show a minimum at 03:00 UT and a peak value at about 10:00 UT. These results are compared with the TEC derived from IRI-2007 using the NeQuick option for the topside electron density (IRI–TEC). Seasonal mean hourly averages show that IRI-2007 model TEC values are too high for all the seasons. The high prediction primarily occur during daytime hours till around midnight hours local time for all the seasons, with the highest percentage deviation in TEC of more 90% seen in September equinox and lowest percentage deviation in TEC of less than 20% seen in March equinox. Unlike the GPS–TEC, the IRI–TEC does not respond to geomagnetic storms and does overestimate TEC during the recovery phase of the storm. While the modeled and observed data do correlate so well, we note that IRI-2007 model is strongly overestimating the equatorial ion fountain effect during the descending phase of solar cycle, and this could be the reason for the very high TEC estimations.  相似文献   

4.
This paper presents an investigation into the variability and predictability of the maximum height of the ionospheric F2 layer, hmF2 over the South African region. Data from three South African stations, namely Madimbo (22.4°S, 26.5°E, dip angle: −61.47°), Grahamstown (33.3°S, 26.5°E, dip angle: −64.08°) and Louisvale (28.5°S, 21.2°E, dip angle: −65.44°) were used in this study. The results indicate that hmF2 shows a larger variability around midnight than during the daytime for all seasons. Monthly median hmF2 values were used in all cases and were compared with predictions from the IRI-2007 model, using the URSI (Union Radio-Scientifique Internationale) coefficient option. The analysis covers the diurnal and seasonal hourly hmF2 values for the selected months and time sectors e.g. January, July, April and October for 2003 and 2005. The time ranges between (03h00–23h00 UT; LT = UT + 2h) representing the local sunrise, midday, sunset and midnight hours. The time covers sunrise, midday, sunrise, and midnight hours (03–06h00 UT, 07–11h00 UT, sunrise 16–18h00 UT and 22–23h00 UT; LT = UT + 2h). The dependence of the results on solar activity levels was also investigated. The IRI-2007 predictions follow fairly well the diurnal and seasonal variation patterns of the observed hmF2 values at all the stations. However, the IRI-2007 model overestimates and underestimates the hmF2 value during different months for all the solar activity periods.  相似文献   

5.
The Total Electron Content (TEC) from four locations in the Indian sector namely, Trivandrum (8.47°N, 76.91°E, Geomag.0.63°S, 0.3° dip), Waltair (17.7° N, 83.3°E, Geomag. 6.4°N, 20° dip), Bhopal (23.28°N, 77.34°E, Geomag.14.26°N, 33.2° dip), and Delhi (28.58°N, 77.21°E, Geomag.19.2°N, 43.4° dip) during a low sunspot year of 2004 are used to study the variabilities of the TEC. The day time TEC values are higher over Waltair and Bhopal compared to those at Trivandrum and Delhi. Considerable day-to-day variations in the diurnal values of TEC are observed at the anomaly crest locations. The observed GPS-TEC has been compared with the IRI-2007 model derived TEC considering three different options (IRI-2001, IRI-2001 corrected and Ne-Quick) available in the model for the topside electron density. The TEC derived with Ne-Quick and IRI-01 corrected options show better agreement with GPS-TEC while the TEC from IRI-01 method shows larger deviations. From the correlation analysis carried out between TEC value at 1300 h LT and solar indices parameters namely sunspot number (SSN), F10.7 and EUV, it is observed that the correlation is more during equinoctial months and less during summer months. The correlation coefficients observed over the anomaly locations, Bhopal and Delhi are lower compared to those at Trivandrum and Waltair.  相似文献   

6.
The electron density profiles in the bottomside F2-layer ionosphere are described by the thickness parameter B0 and the shape parameter B1 in the International Reference Ionosphere (IRI) model. We collected the ionospheric electron density (Ne) profiles from the FORMOSAT-3/COSMIC (F3/C) radio occultation measurements from DoY (day number of year) 194, 2006 to DoY 293, 2008 to investigate the daytime behaviors of IRI-B parameters (B0 and B1) in the equatorial regions. Our fittings confirm that the IRI bottomside profile function can well describe the averaged profiles in the bottomside ionosphere. Analysis of the equatorial electron density profile datasets provides unprecedented detail of the behaviors of B0 and B1 parameters in equatorial regions at low solar activity. The longitudinal averaged B1 has values comparable with IRI-2007 while it shows little seasonal variation. In contrast, the observed B0 presents semiannual variation with maxima in solstice months and minima in equinox months, which is not reproduced by IRI-2007. Moreover, there are complicated longitudinal variations of B0 with patterns varying with seasons. Peaks are distinct in the wave-like longitudinal structure of B0 in equinox months. An outstanding feature is that a stable peak appears around 100°E in four seasons. The significant longitudinal variation of B0 provides challenges for further improving the presentations of the bottomside ionosphere in IRI.  相似文献   

7.
The International Reference Ionosphere IRI-2001 model contains geomagnetic activity dependence based on an empirical storm time ionospheric correction (STORM model). An extensive validation of the STORM model for the middle latitude region has been performed. In this paper the ability of the STORM model to predict foF2 values at high latitudes is analyzed. For this, ionosonde data obtained at Base Gral. San Martin (68.1°S, 293°E) are compared with those obtained by the IRI-2001 model with or without storm correction during four geomagnetic storms that occurred in 2000 (Rz12 = 117) and 2001 (Rz12 = 111). The results show that predicted values with the STORM model follow the behaviour of foF2 experimental data better than without the STORM model. The relative deviation between measured and predicted foF2 reaches values of up to 24% and 43% with and without the STORM model in IRI-2001, during the main phase of the storms. In order to explain increases of electron density that occurred prior to the storm onset and also decreases of electron density observed during the first part of the recovery of the storm, possible physical mechanisms are discussed.  相似文献   

8.
The ionospheric sounding observations using the Canadian Advanced Digital Ionosondes (CADIs) operational at Palmas (PAL; 10.2°S, 48.2°W; dip latitude 6.6°S; a near-equatorial station), and São José dos Campos (SJC, 23.2°S, 45.9°W; dip latitude 17.6°S; a low-latitude station located under the southern crest of the equatorial ionospheric anomaly), Brazil, are analyzed during the different seasons viz., winter (June and July 2003), spring (September and October 2003), summer (December 2003 and January 2004), and fall (March and April 2004). The period used has medium solar activity (sunspot number between 77.4 and 39.3). The seasonal mean variations (using only geomagnetically quiet days) of the ionospheric parameters foF2 (critical frequency of the F-region), hpF2 (virtual height at 0.834 foF2; considered to be close to hmF2 (peak height of the F-region)), and h’F (minimum virtual height of the F-region) are calculated and compared between PAL and SJC. The prominent differences between PAL and SJC are as follows: h’F variations show strong post-sunset enhancement at PAL during the seasons of spring, summer, and fall; hpF2 variations show pre-sunrise uplifting of the F-layer at both stations during all the seasons and the hpF2 values during the daytime are lower at SJC compared with PAL during all the seasons; the foF2 variations show mid-day bite-out at PAL during all the seasons and SJC shows strong equatorial ionospheric anomaly during summer and fall seasons. Also, the seasonal variations of the ionospheric parameters foF2 and hpF2 (with ±1 standard deviation) observed at PAL and SJC are compared with the IRI-2007 model results of foF2 and hmF2. In addition, variations of the foF2 and hpF2 observed at SJC are compared with the IRI-2001 model results of foF2 and hmF2. It should be pointed out that the ionospheric parameter hpF2 is much easier to obtain using computer program developed at UNIVAP compared with hmF2 (using POLAN program). During the daytime due to underlying ionization hpF2 estimated is higher (approximately 50 km) than the true peak height hmF2. During the nighttime hpF2 is fairly close to hmF2. The comparison between the foF2 variations observed at PAL and SJC with the IRI-2007 model results shows a fairly good agreement during all the seasons. However, the comparison between the hpF2 variations observed at PAL and SJC with the hmF2 variations with the IRI-2007 model results shows: (1) a fairly good agreement during the nighttime in all the seasons; (2) the model results do not show the pre-sunrise uplifting of the F-layer at PAL and SJC in any season; (3) the model results do not show the post-sunset uplifting of the F-layer at PAL; (4) considering that, in general, hpF2 is higher than hmF2 during the daytime by about 50 km, the model results are in good agreement at PAL and SJC during all the seasons except summer at SJC, when large discrepancies in the observed hpF2 and modeled hmF2 are observed. Also, it has been observed that, in general, hmF2 values for SJC calculated using IRI-2001 are higher than IRI-2007 during the daytime in winter, summer, and fall. However, hmF2 values for SJC calculated using IRI-2001, are lower than IRI-2007 during the nighttime in spring.  相似文献   

9.
This paper discusses the ability of the International Reference Ionosphere IRI-2007 storm time model to predict foF2 ionospheric parameter during geomagnetic storm periods. Experimental data (based on availability) from two low latitude stations: Vanimo (geographic coordinates, 2.7 °S, 141.3 °E, magnetic coordinates, 12.3 °S, 212.50 °E) and Darwin (geographic coordinates, 12.45 °S, 130.95 °E, magnetic coordinates, 22.9 °S, 202.7 °E) during nine storms that occurred in 2000 (Rz12 = 119), 2001(Rz12 = 111) and 2003 (Rz12 = 64) are compared with those obtained by the IRI-2007 storm model. The results obtained show that the percentage deviation between the experimental and IRI predicted foF2 values during these storm periods is as high as 100% during the main and recovery phases. Based on the values of “relative deviation module mean” (RDMM) obtained (i.e. between 0.08 and 0.60), it is observed that there is a reasonable to poor agreement between measured foF2 values and the IRI-storm model prediction values during main and recovery phases of the storms under investigation. As a result, in addition to other studies that have been carried out from different sectors, more studies are required to be carried out. This will enable IRI community to improve on the present performance of the model. In general the IRI-storm model predictions follow normal trend of the foF2 measured values but does not reproduce well the measured values.  相似文献   

10.
Based on the electron density (Ne) and temperature (Te) data from DEMETER, the ionospheric perturbations before 82 Ms ? 7.0 earthquakes (EQs) during 2005–2010 were studied, using moving median and space difference methods within 10 days before and 2 days after these events in local nighttime. It was found that the plasma parameters disturbances appeared before 49 EQs, in which more disturbances were detected before shallow-focus earthquakes than deep ones, and there was little difference between continental and oceanic ones, both exceeding 1/2 percentage. For the disturbed time, more perturbations were seen in 1, 3, 5, 6, 8 days before EQs and 1 day after EQs. For the spatial distribution, the anomalies before EQs were not just above the epicenters, but shifted equatorward with several degrees to almost twenty degrees. Most of the abnormities were positive ones, which demonstrate that Ne increases before EQs at the altitude of 670 km of DEMETER. Perturbations of Ne were more than that of Te, which illustrates that Ne is much more sensitive to seismic activity than Te.  相似文献   

11.
Diurnal variations in the total electron content (TEC) at Makerere University (00°19′N, 32°40′E, Geo Dip −22°), Uganda, have been investigated using a NovAtel GSV400B GPS receiver for the year 2010. The highest TEC values occurred from 13h00 to 17h00 local time (LT) throughout the year, with the highest values being exhibited during equinoctial months. In addition, there was some correlation between this high TEC and the moderate storms that occurred in 2010. These high TEC values have been attributed to the solar EUV ionization coupled with the upward vertical ExB drift. Nighttime enhancements were also found to be seasonally dependant, attaining maximum values during equinoctial months. These results were also compared with modeled TEC values by the IRI-2007 model. The modeled values were in good agreement with the measured values except for these two points: (1) the model had a short-fall in predicting the nighttime enhancements; and (2) the model’s minimum TEC did not coincide with the measured minimum in most of the months. Observed TEC depletions were found to correlate with an increase in the S4 index and have been identified as a manifestation of the plasma density depletions of the equatorial origin.  相似文献   

12.
The temporal and seasonal variations of Total Electron Content (TEC) are studied at Agra (Geographic Lat. 27.17°N, Long. 78.89°E, Dip: 41.4°), India, which is in the equatorial anomaly region, for a period of 12 months from 01 January to 31 December, 2007 using a Global Positioning System (GPS) receiver. The mean TEC values show a minimum at 0500 h LT (LT = UT + 5.5 h) and a peak value at about 1400 h LT. The lowest TEC values are observed in winter whereas largest values are observed in equinox and summer. Anomalous variations are found during the period of magnetic disturbances. These results are compared with the TEC derived from IRI-2007 using three different options of topside electron density, NeQuick, IRI01-corr, and IRI-2001. A good agreement is found between the TEC obtained at Agra and those derived from IRI models.  相似文献   

13.
Analysis of a long-time series of hourly median characteristics of the ionospheric plasma at two mid-latitude locations in the Northern and Southern hemisphere, Juliusruh (54.6N; 13.4E) and Hobart (42.9S; 147.3E), reveals patterns of their synchronous and independent variability. We studied timelines of GPS vTEC, ionogram-derived F2-layer peak electron density NmF2, ionospheric equivalent slab thickness τ, and their ratios at two locations during the complete 23rd solar cycle and its following period of the extremely low solar activity in 2008–2009. This study has also involved the comparative analysis of the observed data versus the model predictions by IRI-2012. During the high solar activity in 2000–2002, seasonal variations show a complicated cross-hemisphere behavior influenced by the winter and semi-annual anomalies, with the largest noon-time values of TEC and NmF2 observed around equinoxes. Strength of the winter anomaly in NmF2 was significantly greater at Juliusruh in comparison with Hobart. The winter anomaly in GPS vTEC values was much weaker than in NmF2 for the Northern hemisphere mid-latitudes and was entirely absent at the Southern hemisphere. Cross-hemisphere analysis of the equivalent slab thickness shows its clear seasonal dependence for all levels of solar activity: the day-time maximum τmax is observed during local summer, whereas the day-time minimum τmin is observed during local winter. The night-time values of τ were higher compared to the day-time values during the winter and equinox seasons. Comparative model-data study shows rather good IRI performance of the day-time NmF2 for mid-latitudes of both hemispheres and rather noticeable overestimations for the mid-night NmF2 values during high solar activity. Analysis of IRI vTEC demonstrates the model limitations, related with the absence of the plasmaspheric part, and actual demand in a reliable and standard ionosphere–plasmasphere model for analysis of GPS vTEC.  相似文献   

14.
Diurnal and seasonal variations of critical frequency of ionospheric F2-region ‘foF2’ and the height of peak density ‘hmF2’ are studied using modern digital ionosonde observations of equatorial ionization anomaly (EIA) crest region, Bhopal (23.2°N, 77.6°E, dip 18.5°N), during solar minimum period 2007. Median values of these parameters are obtained at each hour using manually scaled data during different seasons and compared with the International Reference Ionosphere-2001 model predictions. The observations suggest that on seasonal basis, the highest values of foF2 are observed during equinox months, whereas highest values of hmF2 are obtained in summer and lowest values of both foF2 and hmF2 are observed during winter. The observed median and IRI predicted values of foF2 and hmF2 are analyzed with upper and lower bound of inter-quartile range (IQR) and it is find out that the observed median values are well inside the inter-quartile range during the period of 2007. Comparison of the recorded foF2 and hmF2 values with the IRI-2001 output reveals that IRI predicted values exhibit better agreement with hmF2 as compared to foF2. In general, the IRI model predictions show some agreement with the observations during the year 2007. Therefore it is still necessary to implement improvements in order to obtain better predictions for EIA regions.  相似文献   

15.
Based on the ISL data detected by DEMETER satellite, the solar cycle variation in electron density (Ne) and electron temperature (Te) were studied separately in local daytime 10:30 and nighttime 22:30 during 2005–2010 in the 23rd/24th solar cycles. The semi-annual, annual periods and decreasing trend with the descending solar activity were clearly revealed in Ne. At middle and high latitudes, there exhibited phase shift and even reversed annual variation over Southern and Northern hemisphere, and the annual variation amplitudes were asymmetrical at both hemispheres in local daytime. In local nighttime, the annual variations of Ne at south and north hemispheres were symmetrical at same latitudes, but the annual variation amplitudes at different latitudes differed largely, showing obviously zonal features. As for Te, the phase shift in annual variations was not as apparent as Ne with the increase of latitudes at Southern and Northern hemisphere in local daytime. While in local nighttime the reversed annual variations of Te were shown at low latitudinal areas, not at high latitudes as those in Ne. The correlation study on Ne and Te illustrated that, in local daytime, Ne and Te showed strong negative correlation at equator and low latitudes, but during the solar minimum years the correlation between Ne and Te changed to be positive at 25–30° latitudes in March 2009. The correlation coefficient R between Ne and Te also showed semi-annual periodical variations during 2005–2010. While in local nighttime, Ne and Te exhibited relatively weak positive correlation with R being about 0.6 at low latitudes, however no correlation beyond latitudes of 25° was obtained.  相似文献   

16.
We have compared the TEC obtained from the IRI-2012 model with the GPS derived TEC data recorded within southern crest of the EIA in the Eastern Africa region using the monthly means of the 5 international quiet days for equinoxes and solstices months for the period of 2012 – 2013. GPS-derived TEC data have been obtained from the Africa array and IGS network of ground based dual-frequency GPS receivers from four stations (Kigali (1.95°S, 30.09°E; Geom. Lat. 11.63°S), Malindi (2.99°S, 40.19°E; Geom. Lat. 12.42°S), Mbarara (0.60°S, 30.74°E; Geom. Lat. 10.22°S) and Nairobi (1.22°S, 36.89°E; Geom. Lat. 10.69°S)) located within the EIA crest in this region. All the three options for topside Ne of IRI-2012 model and ABT-2009 for bottomside thickness have been used to compute the IRI TEC. Also URSI coefficients were considered in this study. These results are compared with the TEC estimated from GPS measurements. Correlation Coefficients between the two sets of data, the Root-Mean Square Errors (RMSE) of the IRI-TEC from the GPS-TEC, and the percentage RMSE of the IRI-TEC from the GPS-TEC have been computed. Our general results show that IRI-2012 model with all three options overestimates the GPS-TEC for all seasons and at all stations, and IRI-2001 overestimates GPS-TEC more compared with other options. IRI-Neq and IRI-01-corr are closely matching in most of the time. The observation also shows that, GPS TEC are underestimated by TEC from IRI model during noon hours, especially during equinoctial months. Further, GPS-TEC values and IRI-TEC values using all the three topside Ne options show very good correlation (above 0.8). On the other hand, the TEC using IRI-Neq and IRI-01- corr had smaller deviations from the GPS-TEC compared to the IRI-2001.  相似文献   

17.
In this work, the foF2 and hmF2 parameters at the conjugate points near the magnetic equator of Southeast Asia are studied and compared with the International Reference Ionosphere (IRI) model. Three ionosondes are installed nearly along the magnetic meridian of 100°E; one at the magnetic equator, namely Chumphon (10.72°N, 99.37°E, dip angle 3.0°N), and the other two at the magnetic conjugate points, namely Chiang Mai (18.76°N, 98.93°E, dip angle 12.7°N) and Kototabang (0.2°S, 100.30°E, dip angle 10.1°S). The monthly hourly medians of the foF2 and hmF2 parameters are calculated and compared with the predictions obtained from the IRI-2007 model from January 2004 to February 2007. Our results show that: the variations of foF2 and hmF2 predicted by the IRI-2007 model generally show the similar feature to the observed data. Both parameters generally show better agreement with the IRI predictions during daytime than during nighttime. For foF2, most of the results show that the IRI model overestimates the observed foF2 at the magnetic equator (Chumphon), underestimates at the northern crest (Chiang Mai) and is close to the measured ones at the southern crest of the EIA (Kototabang). For hmF2, the predicted hmF2 values are close to the hmF2(M3000F2OBS) during daytime. During nighttime, the IRI model gives the underestimation at the magnetic equator and the overestimation at both EIA crests. The results are important for the future improvements of the IRI model for foF2 and hmF2 over Southeast Asia region.  相似文献   

18.
The electron density and temperature distribution of the equatorial and low latitude ionosphere in the Indian sector has been investigated by simultaneously solving the continuity, momentum and energy balance equations of ion and electron flux along geomagnetic field lines from the Northern to the Southern hemisphere. Model algorithm is presented and results are compared with the electron density and electron temperature measured in situ by Indian SROSS C2 satellite at an altitude of ∼500 km within 31°S–34°N and 75 ± 10°E that covers the Indian sector during a period of low solar activity. Equatorial Ionization Anomaly (EIA) observed in electron density, morning and afternoon enhancements, equatorial trough in electron temperature have been simulated by the model within reasonable limits of accuracy besides reproducing other normal diurnal features of density and temperature.  相似文献   

19.
The representation of the topside ionosphere (the region above the F2 peak) is critical because of the limited experimental data available. Over the years, a wide range of models have been developed in an effort to represent the behaviour and the shape of the electron density (Ne) profile of the topside ionosphere. Various studies have been centred around calculating the vertical scale height (VSH) and have included (a) obtaining VSH from Global Positioning System (GPS) derived total electron content (TEC), (b) calculating the VSH from ground-based ionosonde measurements, (c) using topside sounder vertical Ne profiles to obtain the VSH. One or a combination of the topside profilers (Chapman function, exponential function, sech-squared (Epstein) function, and/or parabolic function) is then used to reconstruct the topside Ne profile. The different approaches and the modelling techniques are discussed with a view to identifying the most adequate approach to apply to the South African region’s topside modelling efforts. The IRI-2001 topside model is evaluated based on how well it reproduces measured topside profiles over the South African region. This study is a first step in the process of developing a South African topside ionosphere model.  相似文献   

20.
The International Reference Ionosphere (IRI) 2007 provides two new options for the topside electron density profile: (a) a correction of the IRI-2001 model, and (b) the NeQuick topside formula. We use the large volume of Alouette 1, 2 and ISIS 1, 2 topside sounder data to evaluate these two new options with special emphasis on the uppermost topside where IRI-2001 showed the largest discrepancies. We will also study the accurate representation of profiles in the equatorial anomaly region where the profile function has to accommodate two latitudinal maxima (crests) at lower altitudes but only a single maximum (at the equator) higher up. In addition to IRI-2001 and the two new IRI-2007 options we also include the Intercosmos-based topside model of Triskova, Truhlik, and Smilauer [Triskova, L., Truhlik, V., Smilauer, J. An empirical topside electron density model for calculation of absolute ion densities in IRI. Adv. Space Res. 37 (5), 928–934, 2006] (TTS model) in our analysis. We find that overall IRI-2007-NeQ gives the best results but IRI-2007-corrected provides a more realistic representation of the altitudinal–latitudinal structure in the equatorial anomaly region. The applicability of the TTS model is limited by the fact that it is not normalized to the F2 peak density and height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号