首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
太阳宇宙线在电离层D层中的电离   总被引:2,自引:0,他引:2  
本文根据带电粒子对D层大气电离的理论,导出了太阳宇宙线在D层的电子产生率Q(h)的表达式,并计算了不同级别的太阳宇宙线事件、不同能谱参数下,Q(h)在极区随高度的分布。结果表明,不同级别、不同能谱的太阳宇宙线事件在极区产生的电离有显著的差别。同一级别,能谱指数γ越大,在较高的高度上电子产生率越大;能谱指数越小,在较低的高度上电子产生率越大。电子产生率的分布曲线出现明显的双峰,一个峰位于60公里左右,另一个峰位于85公里左右。前一个峰主要由太阳宇宙线中质子产生的,后一个峰主要是z≥2的重粒子成分产生的。本文所得结果明显好于Velinov等人的结果。   相似文献   

2.
本文研究能量高达1012eV以上宇宙线电子在星际介质中的传播特征, 得到了一些有趣的结果。作为一种自然的猜测, 宇宙线电子高能成份的区域性特征, 可能是导致银河系γ射线辐射的非均匀成团状分布结构的直接原因。   相似文献   

3.
The allowed cosmic radiation flux accessible to an earth-orbiting spacecraft is a complex function of the satellite position and the geomagnetic cutoff characteristics at each zenith and azimuth angle at each position. We have determined cosmic ray exposure factors for the galactic cosmic ray spectrum for typical shuttle altitudes and inclinations up to 50 degrees. We have utilized d world grid of trajectory-derived cutoff rigidity calculations at 400 km altitude to determine geomagnetic transmission functions that permit a simple and direct calculation of the allowed cosmic ray spectrum to a 400 km satellite orbit. If the interplanetary cosmic ray spectrum is multiplied by the orbit-averaged geomagnetic transmission function the result is the allowed cosmic ray spectrum at the spacecraft.  相似文献   

4.
In this study we applied again to the outstanding solar particle event of 23 February 1956, the largest one in the entire history of observations of solar cosmic rays. Due to significant improvement of the analysis/modeling techniques and new understanding of physical processes in the solar atmosphere and interplanetary space, a possibility arises to interpret the old data in the light of modern concept of multiple particle acceleration at/near the Sun. In our new analysis the data of available then neutron monitors and muon telescopes are used. The technique of the analysis includes: (a) calculation of asymptotic cones of ground-based detectors; (b) modeling of cosmic ray detector responses at variable parameters of the flux of solar relativistic protons; (c) determination of primary solar proton parameters outside magnetosphere by comparison of computed responses with observations. Certain evidence was obtained that the flux of relativistic solar protons consisted of two distinct components: prompt and delayed ones. The prompt component with exponential energy spectrum caused a giant impulse-like increase at a number of European cosmic ray stations. The delayed component had a power-law spectrum and was a cause of gradual increase at cosmic ray stations in the North American region. A numerical simulation of the proton acceleration in the vicinity of the magnetic reconnection region brings to the proton spectrum with exponential dependence on energy. This agrees with observational data for the prompt component. It is also shown that the huge increase in ∼5000% on neutron monitors was due to the prompt component only with the exponential proton spectrum. The power-law spectrum of comparable intensity gave considerably smaller effect.  相似文献   

5.
Features of two successive Forbush effects of the galactic cosmic ray intensity in October–November 2003 have been studied based on the neutron monitors data. The rigidity spectrum of the galactic cosmic ray intensity in the course of the first Forbush effect (22–27 October) is gradually hardening, while the rigidity spectrum of the second Forbush effect (28 October–10 November) from the starting moment is very hard. As far, the energy range of the turbulence of the interplanetary magnetic field is in general responsible for the diffusion of galactic cosmic ray particles of the energy 5–50 GeV (to which neutron monitors are sensitive), we postulate that the gradually hardening (from day to day) of the rigidity spectrum of the first Forbush effect is associated with the enhancement of the power spectral density in the energy range of the interplanetary magnetic field turbulence caused by the large scale irregularities generated due to the interaction of the extending high speed disturbances with the background solar wind. The very hard rigidity spectrum (from the starting moment) of the second Forbush effect is generally associated with the well established new structure of the energy range of the interplanetary magnetic field turbulence enriched by the already created large scale irregularities. The gradually softening of the rigidity spectrum during the recovery phase of the second Forbush effect confirms that the disturbed interplanetary magnetic field turbulence step by step returns to the initial state.  相似文献   

6.
Fluctuations of cosmic rays and interplanetary magnetic field upstream of interplanetary shocks are studied using data of ground-based polar neutron monitors as well as measurements of energetic particles and solar wind plasma parameters aboard the ACE spacecraft. It is shown that coherent cosmic ray fluctuations in the energy range from 10 keV to 1 GeV are often observed at the Earth’s orbit before the arrival of interplanetary shocks. This corresponds to an increase of solar wind turbulence level by more than the order of magnitude upstream of the shock. We suggest a scenario where the cosmic ray fluctuation spectrum is modulated by fast magnetosonic waves generated by flux of low-energy cosmic rays which are reflected and/or accelerated by an interplanetary shock.  相似文献   

7.
Reacceleration of cosmic rays produced by galactic sources on the galactic wind termination shock is considered. The problem of the cosmic ray spectrum continuity is investigated. Numeric results are presented and discussed. We found that a smooth spectral transition from the galactic cosmic rays to the cosmic rays reaccelerated at the galactic wind termination shock is difficult to produce, if the maximum energy of accelerated particles is the same throughout the surface of the termination shock. The possible solution of this problem is the non-spherical termination shock with different maximum energies at different places of the shock.  相似文献   

8.
We implemented a 2D Monte Carlo model to simulate the solar modulation of galactic cosmic rays. The model is based on the Parker’s transport equation which contains diffusion, convection, particle drift and energy loss. Following the evolution in time of the solar activity, we are able to modulate a local interstellar spectrum (LIS), that we assumed isotropic beyond the termination shock, down to the Earth position inside the heliosphere. In this work we focused our attention to the cosmic ray positron fraction at energy below ∼10 GeV, showing how the particle drift processes could explain different results for AMS-01 and PAMELA. We compare our modulated spectra with observations at Earth, and then make a prediction of the cosmic ray positron fraction for the AMS-02 experiment.  相似文献   

9.
The Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory covers the high energy gamma ray energy range, approximately 30 MeV to 30 GeV, with a sensitivity considerably greater than earlier high energy gamma-ray satellites. Thus far, 4 pulsars have been detected and their properties measured, including in 3 cases the energy spectrum as a function of phase. The details of the galactic plane are being mapped and a spectra of the center region has been obtained in good agreement with that expected from cosmic ray interactions. The Magellanic clouds have been examined with the Large Magellanic Cloud having been detected at a level consistent with it having a cosmic ray density compatible with quasi-stable equilibrium. Sixteen Active Galactic Nuclei (AGN's) have been seen thus far with a high degree of certainty including 12 quasars and 4 BL Lac objects, but no Seyferts. Time variation has been detected in some of these AGN's.  相似文献   

10.
本文采用无界银河系的爆发点源各向同性弥散的模型研究了初级质子的输运方程.用加速器实验得到的P-P碰撞截面的最新资料和一个合理的扩散系数, 得到了该方程的解, 进而讨论了该解的一些特点以及诸多类似点源对地球附近质子谱的可能贡献.该模型所预期的质子谱能较好地说明实验结果.   相似文献   

11.
The worldwide neutron monitor network is a unique tool for obtaining with high accuracy the information on density variations, energy spectrum and anisotropy of comic rays at the Earth, outside its atmosphere and magnetosphere. These hourly averaged parameters were obtained over the whole period of cosmic ray monitoring by the ground level neutron monitor network (from 1957 till present) and are collected within the MySQL database. The Internet-project has developed for free access and supplying of cosmic ray density and anisotropy data in different formats.  相似文献   

12.
Spectra of neutrons from interactions of primary cosmic rays in the earth's atmosphere are calculated with the Monte Carlo model fluka for various depths down to sea level. We discuss the environmental models describing the primary cosmic ray spectrum and details of the calculations. Neutron energy spectra are presented for different depths in the atmosphere and for different geographical locations. By comparing results of calculations to measurements on neutron spectra it is shown that fluka may serve as an important tool for the estimation of the radiation environment in the atmosphere.  相似文献   

13.
The intranuclear cascade model INCL4 has been shown to be very successful for describing, without adjustable parameters, a whole set of data for p-induced reactions in the 40 MeV–2 GeV energy range. In view of its possible application to cosmic ray interactions, the INCL4 code has been extended to the 2–15 GeV energy range, so covering a large part of the spectrum of the incident energy of the cosmic rays.  相似文献   

14.
Galactic cosmic ray nuclei represent a significant risk to long-duration spaceflight outside the magnetosphere. We review briefly existing measurements of the composition and energy spectra of heavy cosmic ray nuclei, pointing out which species and energy ranges are most critical to assessing cosmic ray risks for spaceflight. Key data sets are identified and a table of cosmic ray abundances is presented for elements from H to Ni (Z = 1 to 28). Because of the 22-year nature of the solar modulation cycle, data from the approaching 1998 solar minimum is especially important to reducing uncertainties in the cosmic ray radiation hazard. It is recommended that efforts to model this hazard take advantage of approaches that have been developed to model the astrophysical aspects of cosmic rays.  相似文献   

15.
We have studied the effect of Galactic modulation on cosmic rays entering the Galaxy from outside for two different models for the confinement of cosmic rays, using one dimensional transport equation. From this study, the role of extragalactic cosmic rays has been examined critically in the context of the recent data on antiprotons. We have arrived at the conclusion that they are not a significant source of cosmic ray antiprotons. However, determination of the energy spectrum of Ps at least up to a few tens of GeV would provide information on the modulation of cosmic rays, while entering the Galaxy from outside.  相似文献   

16.
Solar modulations of galactic cosmic ray (GCR) intensity contain a wealth of information about their transport in the heliosphere. To extract this information from the data one studies the dependence of the observed modulations on the mean energy of response of detectors providing data for the analyses. There is a great deal of confusion about the detector energy response to GCR spectrum in the literature. We present a preliminary report on the computations of the mean energy of response for the Climax neutron monitor (CL/NM) and IMP 8 cosmic ray nuclear composition instrument to GCR protons for 1973–1998, covering the solar cycles 21 and 22. We find that for penetrating proton channel on IMP 8 the mean energy changes by a factor of over two whereas for the neutron monitor the change is only 21%. However, the corresponding change for the computed modulation function is a factor of about 3.5.  相似文献   

17.
Access of low energy cosmic rays to any position on the Earth depends on the state of the magnetosphere. Anisotropy of cosmic rays, deduced from the neutron monitor network, must assume the variable transmissivity of the magnetosphere especially during the geomagnetic disturbances. We illustrate that computations based on different available models of geomagnetic field during selected strong geomagnetic disturbances in 2003 and 2004 imply different profiles of cut-off rigidities in time, different transmissivity functions and different asymptotic directions. Using of cosmic ray records by neutron monitors at middle and low latitudes during geomagnetically active periods, in addition to cosmic ray anisotropy in interplanetary space deduced from high and low energy cosmic ray ground based measurements, may be used for checking validity of geomagnetic field models.  相似文献   

18.
Several recent results important for production of ion pairs in the Earth atmosphere by various primary cosmic ray nuclei are presented. The direct ionization by various primary cosmic ray nuclei is explicitly obtained. The longitudinal profile of atmospheric cascades is sensitive to the energy and mass (charge) of the primary particle. In this study different cosmic ray nuclei are considered as primaries, namely Helium, Oxygen and Iron nuclei. The cosmic ray induced ionization is obtained on the basis of CORSIKA 6.52 code simulations using FLUKA 2006 and QGSJET II hadronic interaction models. The energy of the primary particles is normalized to GeV per nucleon. In addition, the ionization yield function Y is normalized as ion pair production per nucleon. The obtained ionization yield functions Y for various primaries are compared. The presented results and their application are discussed.  相似文献   

19.
Between 1975 and 1983 HELIOS 1 scanned the interplanetary medium between 0.3 and 1 AU 31 times. The observed variations in the differential and integral flux of protons and helium nuclei in the energy range from 4 to >50 MeV/n are characterized by large temporal changes in the intensities, moderate changes in the energy spectrum and changes in the gradient below the detection level (60%). During solar minimum conditions recurrent disturbances are caused mainly by corotating interaction regions. The onset of solar activity near the end of 1977, characterized by a large number of solar events, is accompanied by a monotonous decrease of galactic cosmic radiation. The successive reduction of the cosmic ray intensity to the level of solar maximum is discussed in view of the role of large transient disturbances as compared to processes as diffusion, convection, adiabatic energy losses and drifts.  相似文献   

20.
Within the last years, a real-time system to monitor high energy cosmic rays for space weather use has been operated at Athens cosmic ray station. Neutron monitors and satellite high resolution data in real time are used, making it possible to observe cosmic rays in dual energy range observations. In large solar energetic particle (SEP) events, ground level enhancement (GLE) can provide the earliest alert for the onset of the SEP event. This system watches for count rate increases recorded in real time by 23 neutron monitors, which triggers an alarm if a ground level enhancement (GLE) of cosmic ray intensity is detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号