首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 902 毫秒
1.
Their brief report presents the advances of the magnetospheric physics researches in China during the period of 2004-2006. During the past two years, China-ESA cooperation DSP (Double Star Program) satellites were successively launched. In addition, China also participated in the scientific research of ESA's Cluster mission. The DSP and Cluster missions provide Chinese space physicists high quality data to study multiscale physical process in the magnetosphere. The work made based on the data of DSP is presented in the paper of "Progress of Double Star Program" of this issue.  相似文献   

2.
This paper presents the status of two satellites of Double Star Program, and a part of scientific results based on the data of Double Star Program obtained during the period of 2006-2008.Other scientific results in the magnetospheric physics research can be found in "Multi scale physical process in the magnetosphere" of this issue.   相似文献   

3.
The Double Star Programme (DSP) is the first joint space mission between China and ESA. The mission, which is made of two spacecraft, is designed to investigate the magnetospheric global processes and their response to the interplanetary disturbances in conjunction with the Cluster mission. The first spacecraft, TC-1 (Tan Ce means "Explorer"), was launched on 30 December 2003, and the second one, TC-2, on 25 July 2004 on board two Chinese Long March 2C. Due to the importance of and success of DSP, both CNSA and ESA approved the extension of DSP. This paper presents DSP mission and some important scientific results made based on the data of DSP.  相似文献   

4.
The combined observations of Double Star and Cluster missions allow for, for the first time, six-point measurements of the main plasma parameters in the key scientific regions of the near-Earth environment. In the past two years, a great number of works were made based on the data from DSP and Cluster missions, advancing remarkably the research of magnetospheric physics in China. This paper briefly reviews these important scientific results based on 51 selected publications.   相似文献   

5.
In the past two years, many progresses have been made in magnetospheric physics by using the data of Double Star Program, Cluster, THEMIS and RBSP missions, or by computer simulations. This paper briefly reviews these works based on papers selected from the 126 publications from March 2012 to March 2014. The subjects cover various sub-branches of magnetospheric physics,including geomagnetic storm, magnetospheric substorm and magnetic reconnection.  相似文献   

6.
In the past two years, many progresses are made in magnetospheric physics by using either the data of Double Star Program, Cluster and THEMIS missions, or by computer simulations. This paper briefly reviews these works based on papers selected from the 80 publications from April 2010 to April 2011. The subjects covered various sub-branches of magnetospheric physics, including geomagnetic storm, magnetospheric substorm, etc.   相似文献   

7.
In the past two years, most of the works on magnetospheric physics were made by using the data of Double Star Program and Cluster missions. However some works were still conducted by computer simulation or using the data from other space missions and ground geomagnetic observations. This paper briefly review these previous works based on papers selected from the 28 publications from April 2008 to April 2010. The subjects covered various sub-branches of magnetospheric physics, including geomagnetic storm, magnetospheric substorm and etc.   相似文献   

8.
In the past two years, much progress is made in magnetospheric physics by using the data of Double Star Program, Cluster, THEMIS, RBSP, Swarm missions etc., or by computer simulations. This paper briefly reviews these works based on papers selected from the 191 publications from January 2014 to December 2015. The subjects cover various sub-branches of magnetospheric physics, including geomagnetic storm, magnetospheric substorm, magnetic reconnection, solar windmagnetosphere-ionosphere interaction, radiation belt, outer magnetosphere, magnetotail, plasmasphere, geomagnetic field, auroras and currents.   相似文献   

9.
In the past two years, much progress has been made in magnetospheric physics by using the data of Double Star Program, Cluster, THEMIS, RBSP, Swarm, MMS, ARTEMIS, MESSENGER missions etc., or by computer simulations. This paper briefly reviews these works based on papers selected from the 227 publications from January 2016 to December 2017. The subjects cover most sub-branches of magnetospheric physics, including geomagnetic storm, magnetospheric substorm, magnetic reconnection, solar wind-magnetosphereionosphere interaction, radiation belt, plasmasphere, outer magnetosphere, magnetotail, geomagnetic field, auroras, and currents.   相似文献   

10.
In the past two years, many progresses were made in Magnetospheric Physics by using the data of SuperMAG, Double Star Program, Cluster, THEMIS, RBSP, DMSP, DEMETER, NOAA, Van Allen probe, Swarm, MMS, ARTEMIS, MESSENGER, Fengyun, BeiDa etc., or by computer simulations. This paper briefly reviews these works based on papers selected from the 248 publications from January 2018 to December 2019. The subjects covered various sub-branches of Magnetospheric Physics, including geomagnetic storm, magnetospheric substorm, magnetic reconnection, solar wind-magnetosphere-ionosphere interaction, radiation belt, ring current, whistler waves, plasmasphere, outer magnetosphere, magnetotail, planetary magnetosphere, and technique.   相似文献   

11.
The Geospace Double Star Project (DSP) consists of two small satellites operating in the near-earth equatorial and polar regions, respectively. The goals of DSP are: (1) to provide high-resolution field, particle, and wave measurements in some important near-earth active regions which have not been covered by current ISTP missions, such as the near-earth plasma sheet and its boundary layer, the ring current, the radiation belts, the dayside magnetopause boundary layer, and the polar region; (2) to investigate the trigger mechanisms of magnetic storms, magnetospheric substorms, and magnetospheric particle events,as well as the responses of geospace storms to solar activities and interplanetary disturbances; (3) to set up the models describing the spatial and temporal variations of the near-earth space environment.To realize the above goals, the equatorial satellite TC-1 and the polar satellite TC-2 will accommodate, respectively, eight instruments on board. TC-1was launched successfully in December 2003 while the polar satellite (TC-2)will be launched in July 2004. The orbit of the equatorial satellite TC-1 consists of a perigee at 550 km, an apogee at 60 000 km, and an inclination of about 28.5; while the orbit of the polar satellite will have a perigee of 700 km, an apogee of 40 000 km, and an inclination of about 90. The two satellites will take coordinated measurements with Cluster Ⅱ and will first form a "six-point exploration" in geospace.The operational status of TC-1 are introduced in this paper.  相似文献   

12.
The Geospace Double Star Exploration Project (DSP) contains two small satel lites operating in the near-earth equatorial and polar regions respectively. The tasks of DSP are: (1) to provide high-resolution field, particle and wave mea surements in several important near-earth active regions which have not been covered by existing ISTP missions, such as the near-earth plasma sheet and its boundary layer, the ring current, the radiation belts, the dayside magnetopause boundary layer, and the polar region; (2) to investigate he trigger mechanisms of magnetic storms, magnetospheric substorms, and magnetospheric particle storms, as well as the responses of geospace storms to solar activities and in terplanetary disturbances; (3) to set up the models describing the spatial and temporal variations of the near-earth space environment.To complete the mission, there are eight instruments on board the equatorial satellite and the polar satellite, respectively. The orbit of the equatorial satellite is proposed with a perigee at 550km and an apogee at 60 000km, and the inclination is about 28.5°; while the orbit of the polar satellite with a perigee at 700 km and an apogee at 40 000 km, as well as an inclination about 90°. The equatorial and polar satellites are planed to be launched into orbits in June 2003 and December 2003 respectively to take coordinating measurements with Cluster Ⅱ and other missions.  相似文献   

13.
讨论了TC-2卫星探测伸杆在技术状态更改中的结构和力学问题, 并对TC-2卫星 探测伸杆锁紧支座进行了模态分析、结构静强度计算和解锁机构展开的仿真分 析. 结果表明, 伸杆锁紧支座在更换火工切割器后, 支座频率变化不大, 不会 对整星的基频产生影响, 改进后的锁紧支座结构能够承受动载荷, 最大应力和 应变均在材料的许用范围之内, 锁紧支座在打开过程中不会与任何零件发生干 涉, 满足卫星对伸杆部件的要求.   相似文献   

14.
On October 8, 2004, the Cluster and Double Star spacecraft crossed the near-Earth (12–19 RE) magnetotail neutral sheet during the recovery phase of a small, isolated substorm. Although they were separated in distance by ∼7 RE and in time by ∼30 min, both Cluster and Double Star observed steady, but highly structured Earthward moving >1000 km/s high speed H+ beams in the PSBL. This paper utilizes a global magnetohydrodynamic (MHD) simulation driven by Wind spacecraft solar wind input to model the large-scale structure of the PSBL and large-scale kinetic (LSK) particle tracing calculations to investigate the similarities and differences in the properties of the observed beams. This study finds that the large-scale shape of the PSBL is determined by the MHD configuration. On smaller scales, the LSK calculations, in good qualitative agreement with both Cluster and Double Star observations, demonstrated that the PSBL is highly structured in both time and space, on time intervals of less than 2 min, and spatial distances of the order of 0.2–0.5 RE. This picture of the PSBL is different from the ordered and structured region previously reported in observations.  相似文献   

15.
The four identical Cluster spacecraft, launched in 2000, orbit the Earth in a tetrahedral configuration and on a highly eccentric polar orbit (4–19.6 RE). This allows the crossing of critical layers that develop as a result of the interaction between the solar wind and the Earth’s magnetosphere. Since 2004 the Chinese Double Star TC-1 and TC-2 spacecraft, whose payload comprise also backup models of instruments developed by European scientists for Cluster, provided two additional points of measurement, on a larger scale: the Cluster and Double Star orbits are such that the spacecraft are almost in the same meridian, allowing conjugate studies. The Cluster and Double Star observations during the 2005 and 2006 extreme solar events are presented, showing uncommon plasma parameters values in the near-Earth solar wind and in the magnetosheath. These include solar wind velocities up to ∼900 km s−1 during an ICME shock arrival, accompanied by a sudden increase in the density by a factor of ∼5 and followed by an enrichment in He++ in the secondary front of the ICME. In the magnetosheath ion density values as high as 130 cm−3 were observed, and the plasma flow velocity there reached values even higher than the typical solar wind velocity. These resulted in unusual dayside magnetosphere compression, detection of penetrating high-energy particles in the magnetotail, and ring current development following several successive injections of energetic particles in the inner magnetosphere, which “washed out” the previously formed nose-like ion structures.  相似文献   

16.
On TC-1 (Tan Ce 1), the equatorial spacecraft of the Double Star mission, a strong spin-synchronized magnetic interference from the solar panels was observed. In-flight correction techniques for spinning spacecraft that are based on minimizing spin tones in the spin-aligned component and in the magnitude of the ambient magnetic field are therefore not possible in this case. However, due to the fortunate situation that the spacecraft carries two flux-gate magnetometers on the same boom (at 0.5 m distance from each other), the spacecraft field effects could be removed from the spin-averaged data to achieve 0.2 nT relative accuracy, by using a gradiometer technique. Methodology and results are presented. The obtained accuracy allows the use of the data in multi-spacecraft studies together with the Cluster satellites.  相似文献   

17.
During conditions of northward interplanetary magnetic field (IMF), the near-tail plasma sheet is known to become denser and cooler, and is described as the cold-dense plasma sheet (CDPS). While its source is likely the solar wind, the prominent penetration mechanisms are less clear. The two main candidates are solar wind direct capture via double high-latitude reconnection on the dayside and Kelvin–Helmholtz/diffusive processes at the flank magnetopause. This paper presents a case study on the formation of the CDPS utilizing a wide variety of space- and ground-based observations, but primarily from the Double Star and Polar spacecraft on December 5th, 2004. The pertinent observations can be summarized as follows: TC-1 observes quasi-periodic (∼2 min period) cold-dense boundary layer (compared to a hot-tenuous plasma sheet) signatures interspersed with magnetosheath plasma at the dusk flank magnetopause near the dawn-dusk terminator. Analysis of this region suggests the boundary to be Kelvin–Helmholtz unstable and that plasma transport is ongoing across the boundary. At the same time, IMAGE spacecraft and ground based SuperDARN measurements provide evidence of high-latitude reconnection in both hemispheres. The Polar spacecraft, located in the southern hemisphere afternoon sector, sunward of TC-1, observes a persistent boundary layer with no obvious signature of boundary waves. The plasma is of a similar appearance to that observed by TC-1 inside the boundary layer further down the dusk flank, and by TC-2 in the near-Earth magnetotail. We present comparisons of electron phase space distributions between the spacecraft. Although the dayside boundary layer at Polar is most likely formed via double high-altitude reconnection, and is somewhat comparable to the flank boundary layer at Double Star, some differences argue in favour of additional transport that augment solar wind plasma entry into the tail regions.  相似文献   

18.
TC-2卫星携带了高能中性原子成像仪.在理论上可以根据对中性原子的探测通过反演获得磁层中环电流的空间分布.开发了一种新的反演技术和算法来反演环电流的分布.文中将层析成像技术引入反演环电流区离子分布,把磁层空间环电流区域划分为网格并依据层析成像常用的代数重建法反演环电流的分布.反演前后的电流离子分布具有一致性,证实了这种反演方法的可行性.通过对比反演结果与初始分布,模型通过较少的假设和简单的步骤就可以获得全面的环电流信息.   相似文献   

19.
采用已经建立的环电流离子解析模型,结合Chamberlain地冕中性层模型,研究了2004年11月一次大磁暴期间的环电流区域中性原子(ENA)图像.结果表明,模拟的ENA图像与TC-2卫星搭载的中性原子成像仪(NUAUD)的观测图像在方位角或地方时分布、高度或纬度分布和能谱分布方面存在一定的差异.如果依据磁暴发展的不同阶段来选择环电流离子模型的方位角不对称因子和通量最大方向的方位角,增大地冕中性层在低高度区域的密度或者考虑氢(H)以外的其他中性成分,改进注入边界处的离子能谱分布函数,且考虑不同种类环电流离子的比例随磁暴发展可能发生的变化,该模型有望产生更符合观测的模拟ENA图像.  相似文献   

20.
China is expanding and sharing its capacity for Earth observation by developing sensors, platforms, and launch capabilities in tandem with growing lunar and deep space exploration. China is considering the Moon as a viable Earth observation platform to provide high-quality, planetary-scale data. The platform would produce consistent spatiotemporal data because of its long operational life and the geological stability of the Moon. China is also quickly improving its capabilities in processing and transforming Earth observation data into useful and practical information. Programs such as the Big Earth Data Science Engineering Program (CASEarth) provide opportunities to integrate data and develop "Big Earth Data" platforms to add value to data through analysis and integration. Such programs can offer products and services independently and in collaboration with international partners for data-driven decision support and policy development. With the rapid digital transformation of societies, and consequently increasing demand for big data and associated products, Digital Earth and the Digital Belt and Road Program (DBAR) allow Chinese experts to collaborate with international partners to integrate valuable Earth observation data in regional and global sustainable development.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号