首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We present measurements of the thermal conductivity λ(t, P, L) = l/ρ(t, P, L) near the superfluid transition of 4He at saturated vapor pressure and confined in cylindrical geometries with radii L = 0.5 and 1.0 μm (t  T/Tλ(P)  1). For L = 1.0 μm measurements at six pressures P are presented. At and above Tλ the data are consistent with a universal scaling function F(X) = (L/ξo)x/ν(ρ/ρ0), X = (L/ξo)1/νt valid for all P (ρ0 and x are the pressure-dependent amplitude and effective exponent of the bulk resistivity ρ(t, P, ∞) = ρ0tx and ξ = ξ0tν is the correlation length). Indications of breakdown of scaling and universality are observed below Tλ.  相似文献   

2.
To investigate the feasibility of new satellite observations, including air quality (AQ) observations from geostationary (GEO) orbit, it is essential to link the measurement precision (ε) with sensor specifications in advance. The present study attempts to formulate the linkage between ε and specifications of a UV/visible sensor (signal-to-noise ratio (SNR), full width at half maximum (FWHM) of the slit function, and sampling ratio (SR)) on a GEO satellite. A sophisticated radiative transfer model (JACOSPAR) is used to calculate synthetic radiance spectra that would be measured by a UV/visible sensor observing the atmosphere over Tokyo (35.7°N, 139.7°E) from GEO orbit at 120°E longitude. The spectra, modified according to given sensor specifications, are analyzed by the differential optical absorption spectroscopy technique to estimate the ε for slant column densities of O3 and NO2. We find clear relationships: for example, the ε of the O3 slant column density (molecules cm−2) and SNR at 330 nm are linked by the equation log(ε) = −1.06 · log(SNR) + 20.71 in the UV region, and the ε of the NO2 slant column density and SNR at 450 nm are linked by log(ε) = −0.98 · log(SNR) + 18.00, at a FWHM = 0.6 nm (for the Gaussian slit function) and SR = 4. The relationships are mostly independent of other specifications (e.g., horizontal and temporal resolutions), as they affect ε primarily through SNR, providing constraints in determining the optimal SNR (and alternatively FWHM and SR) for similar UV/visible sensors dedicated for AQ studies.  相似文献   

3.
Solar wind data is used to estimate the autocorrelation function for the stochastic process x(τ) = y(t + τ) − y(t), considered as a function of τ, where y(t) is any one of the quantities B2(t), np(t)V2(t), or np(t). This process has stationary increments and a variance that increases like a power law τ2γ where γ is the scaling exponent. For the kinetic energy density and the proton density the scaling exponent is close to the Kolmogorov value γ = 1/3, for the magnetic energy density it is slightly larger. In all three cases, it is shown that the autocorrelation function estimated from the data agrees with the theoretical autocorrelation function for a self-similar stochastic process with stationary increments and finite variance. This is far from proof, but it suggests that these stochastic processes may be self-similar for time scales in the small scale inertial range of the turbulence, that is, from approximately 10 to 103 s.  相似文献   

4.
The geometries, dipole moments, and rotational constants for the linear and/or bent cations, Cn+1H+ and CnN+(n = 1–6), were studied by the B3LYP method with the modest basis sets. For CnH+(n = odd; 3, 5, 7) and CnN+(n = even; 2, 4, 6), the theoretical rotational constants (Bes) of closed-shell singlet C3H+, C5H+, C7H+, CCN+, C4N+, and C6N+ were calculated to be about 11,244, 2420, 885.2, 11,970, 2439, and 880.8 MHz, respectively. By contrast, the triplets are stable than the corresponding singlets for CnH+(n = odd; 2, 4, 6) and CnN+(n = even; 3, 5) except CN+.  相似文献   

5.
All life on earth is accustomed to the presence of gravity. When gravity is altered, biological processes can go awry. It is of great importance to ensure safety during a spaceflight. Long term exposure to microgravity can trigger detrimental physiological responses in the human body. Fluid redistribution coupled with fluid loss is one of the effects. In particular, in microgravity blood volume is shifted towards the thorax and head. Sympathetic nervous system-induced vasoconstriction is needed to maintain arterial pressure, while venoconstriction limits venous pooling of blood prevents further reductions in venous return of blood to the heart. In this paper, we modify an existing one dimensional blood flow model with the inclusion of the hydrostatic pressure gradient that further depends on the gravitational field modified by the oblateness and rotation of the Earth. We find that the velocity of the blood flow VB is inversely proportional to the blood specific volume d, also proportional to the oblateness harmonic coefficient J2, the angular velocity of the Earth ωE, and finally proportional to an arbitrary constant c. For c = −0.39073 and ξH = −0.5 mmHg, all orbits result to less blood flow velocities than that calculated on the surface of the Earth. From all considered orbits, elliptical polar orbit of eccentricity e = 0.2 exhibit the largest flow velocity VB = 1.031 m/s, followed by the orbits of inclination i = 45°and 0°. The Earth’s oblateness and its rotation contribute a 0.7% difference to the blood flow velocity.  相似文献   

6.
We have analysed a sample of 328 time-integrated GRB prompt emission spectra taken via the Konus instrument on board the US GGS-Wind spacecraft between 2002 and 2004 using a couple of two-components models, Cut-off Power Law (CPL) + Power Law (PL) and blackbody (BB) + PL. The spectra show clear deviation from the Band function. The PL term is interpreted as the low energy tail of a nonthermal emission mechanism. The distributions of corresponding index β give values β < −2/3 consistent with synchrotron and synchrotron self-Compton mechanisms. The distribution of low energy index α associated with the CPL term shows clear discordance with synchrotron models for 31.4% of the analysed GRBs with values exceeding that for the line of death, α = −2/3. Then, a set of nonthermal radiation mechanisms producing harder slopes, i.e., α > −2/3, are presented and discussed. For the remaining majority (68.6%) of GRBs with CPL index α < −2/3, we show that optically thin synchrotron produced by a power law electron distribution of type, N(γ) ∼ γp, γ1 < γ < γ2, for finite energy range (γ2 ≠ ∞) is a likely emission mechanism with α ∼−(p + 1)/2 in the frequency range ν1 ? ν ? ν2 (where ν2 = η2ν1 with η = γ2/γ1), such that for p > 1/3, one gets α < −2/3. We also show that corresponding spectra in terms of Fν and νFν functions are peaked around frequency ν2 instead of ν1, respectively for p < 1 and p < 3. Besides, thermal emission is examined taking a single Planck function for fitting the low energy range. It can be interpreted as an early emission from the GRB fireball photosphere with observed mean temperature, kT′ ∼ 16.8 keV. Furthermore, we have performed a statistical comparison between the CPL + PL and BB + PL models finding comparable χ2-values for an important fraction of GRBs, which makes it difficult to distinguish which model and specific radiation mechanism (possible thermal or nonthermal γ-ray emissions) are best suitable for describing the reported data. Therefore, additional information for those bursts, such as γ-ray polarization, would be highly desirable in future determinations of GRBs observational data.  相似文献   

7.
Recently a new model for explaining the observations of preferential heating of heavy ions in the polar solar corona was proposed ( and ). In that model the ion energization mechanism is the ion reflection off supercritical quasi-perpendicular collisionless shocks in the corona and the subsequent acceleration by the motional electric field E = −V × B/c. The mechanism of heavy ion reflection is based on ion gyration in the magnetic overshoot of the shock. The acceleration due to the motional electric field is perpendicular to the magnetic field, giving rise to large temperature anisotropy with T ? T, in agreement with SoHO observations. Such a model is tested here by means of a one dimensional test particle simulation where ions are launched toward electric and magnetic profiles representing the shock transition. We study the dynamics of O5+, as representative of coronal heavy ions for Alfvénic Mach numbers of 2–4, as appropriate to solar corona. It is found that O5+ ions are easily reflected and gain more than mass proportional energy with respect to protons.  相似文献   

8.
Study of depth–dose distributions for intermediate energy ion beams in tissue-like media such as polyethylene (CH2)n provides a good platform for further improvements in the fields of hadrontherapy and space radiation shielding. The depth–dose distributions for 12C ions at various energies and for light and intermediate ion beams (3He, 16O, 20Ne and 28Si) as well as for heavy ions 56Fe in polyethylene were estimated by using simulation toolkit: Geant4. Calculations were performed mainly by considering two different combinations of standard electromagnetic (EM), binary cascade (BIC), statistical multifragmentation (SMF) and Fermi breakup (FB) models. The energies of the ion beams were selected to achieve the Bragg peaks at predefined position (∼60 mm) and as per their availability. Variations of peak-to-entrance ratio (from 7.44 ± 0.05 to 8.87 ± 0.05), entrance dose (from 2.89 ± 0.01 to 203.71 ± 0.63 MeV/mm) and entrance stopping power (from 3.608 to 208.858 MeV/mm, calculated by SRIM) with atomic number (Z) were presented in a systematic manner. The better peak-to-entrance ratio and less entrance dose in the region Z = 2 to 8 (i.e. 3He to 16O) may provide the suitability of the ion beams for hadrontherapy.  相似文献   

9.
We study the Forbush decrease of the galactic cosmic ray intensity observed in 9–25 September 2005 using the experimental data and a newly developed time-dependent three dimensional modeling. We analyze neutron monitors and muon telescopes, and the interplanetary magnetic field data. We demonstrate a clear relationship between the rigidity (R) spectrum exponent (γ) of the Forbush decrease and the exponent (ν) of the power spectral density of the components of the interplanetary magnetic field in the frequency range of ∼ 10−6–10 −5 Hz. We confirm that an inclusion of the time-dependent changes of the exponent ν makes the newly developed nonstationary three dimensional model of the Forbush decrease compatible with the experimental data. Also, we show that the changes of the rigidity spectrum exponent γ does not depend on the level of convection of the galactic cosmic rays stream by solar wind; depending on the changes of the exponent ν, i.e. on the state of the turbulence of the interplanetary magnetic field.  相似文献   

10.
We address the problem of interacting relativistic current sheets in self-consistent kinetic plasma simulations within the framework of the Particle-In-Cell model. The interaction is enforced in head-on collisions of up to 10 current sheets at relativistic bulk speeds. The simulations are motivated by the general problem of Poynting flux dissipation in ‘striped wind’ configurations presumably governing the relativistic outflows pervasive in pulsar winds and gamma-ray bursts. We identify the generation of non-thermal particles and formation of a stable power-law shape in the particle energy distributions f(γ) dγ ∝ γs dγ. In 1D, a spectral index s ∼ 2 is observed and attributed to a stochastic Fermi-type acceleration mechanism. In 2D, the generic index of s ∼ 3–4 is retained as in previous simulations of individual current sheets. Whereas in 2D the high energy cut-off is constrained by the limited dissipation of magnetic energy, in 1D the process converts the bulk motion of current sheets towards directed particle momentum of an exclusive class of non-thermal particles.  相似文献   

11.
The polarization pattern of ULF pulsations (f ≈ 1–100 mHz) at Terra Nova Bay (Antarctica, CGM λ ∼ 80°) has been determined for the entire 2003, soon after the solar maximum. A comparison with the results of previous investigations, conducted at the same station close to the solar minimum (1994–96), allows to focus common elements and major differences among different frequency bands which persist through the entire solar cycle. Basically, between f ∼ 1.5 and 5 mHz, the day can be divided into four sectors with alternate polarizations. The local time and latitudinal dependence of the observed pattern can be tentatively interpreted in terms of a latitude of resonant field lines reaching λ ∼ 80° in the noon sector; on the other hand, resonance effects of lower latitude field lines can be clearly identified also far from the noon meridian when the station moves into the deep polar cap. Moreover, in the morning sector the resonance region would extend to lower latitudes than in the evening sector. The proposed profile of the resonant region can interpret also the results obtained at other cusp/auroral stations and appears consistent with that one inferred in the northern hemisphere at smaller latitudes. The resonance region progressively shifts toward lower latitude with increasing frequency; correspondingly, the four-sector pattern progressively disappears at TNB. Above f ∼ 20 mHz, the experimental observations might suggest an additional contribution from Sunward propagating waves, possibly via the magnetotail lobes.  相似文献   

12.
The measurements of aerosol optical properties were carried out during April 2006 to March 2011 over Mohal (31.9°N, 77.12°E) in the northwestern Indian Himalaya, using the application of ground-based Multi-wavelength Radiometer (MWR) and space-born Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensors. The average (±standard deviation) values of aerosol optical depth (AOD) at 500 nm, Ångström exponent and turbidity coefficient during the entire measurement period were 0.25 ± 0.09, 1.15 ± 0.42 and 0.12 ± 0.06 respectively. About 86% AOD values retrieved from MODIS remote sensor were found within an uncertainty limit (Δτ = ±0.05 ± 0.15τ). In general, the MWR derived AOD values were higher than that of MODIS retrieval with absolute difference ∼0.02. During the entire period of measurement space-born MODIS remote sensor and ground-based MWR observation showed good correspondence with significant correlation coefficient ∼0.78 and root mean square difference ∼0.06. For daily observations the relative difference between these two estimates stood less than 9%. However, satellite-based and ground-based observation showed good correspondence, but further efforts still needed to eliminate systematic errors in the existing MODIS algorithm.  相似文献   

13.
We present a compact atomic frequency standard based on the interrogation of magnetically trapped 87Rb atoms. Two photons, in the microwave and radiofrequency domain excite the atomic transition. At a magnetic field of 3.23 G this transition from ∣F = 1, mF = −1〉 to ∣F = 2, mF = 1〉 is 1st order insensitive to magnetic field variations. Long Ramsey interrogation times can thus be achieved, leading to a projected stability in the low 10−13 at 1 s. This makes this device a viable alternative to LITE and HORACE as a good candidate for replacing or complementing the rubidium frequency standards and passive hydrogen masers already on board of the GPS, GLONASS, and GALILEO satellites. Here we present preliminary results. We use an atom chip to cool and trap the atoms. A coplanar waveguide is integrated to the chip to carry the Ramsey interrogation signal, making the physics package potentially as small as (5 cm)3. We describe the experimental apparatus and show preliminary Ramsey fringes of 1.25 Hz linewidth. We also show a preliminary frequency stability σy = 1.5 × 10−12τ−1/2 for 10 < τ < 103 s. This represents one order of magnitude improvement with respect to previous experiments.  相似文献   

14.
By analyzing the vector magnetograms of Huairou Solar Observing Station (HSOS) taken at the line center (0.0 Å) and the line wing (−0.12 Å) of FeI λ5324.19 Å, we make an estimate of the measured errors in transversal azimuths (δ?) caused by Faraday rotation. Since many factors, such as the magnetic saturation and scattered light, can affect the measurement accuracy of the longitudinal magnetic field in the umbrae of sunspots, we limit our study in the region ∣Bz∣ < 800 G. The main mean azimuth rotations are about 4°, 6°, 7° and 9°, while ∣Bz∣ are in the ranges of 400–500 G, 500–600 G, 600–700 G and 700–800 G, respectively. Moreover, we find there is also an azimuth rotation of about 8° at the wavelength offset −0.12 Å of the line compared against a previous numerical simulation.  相似文献   

15.
In this paper we present a new mechanism of the main energy conversion of the solar flare. Since a flare inducing prominence (flux tube) rises Vz ? 300 km s−1, the plasmas below it cannot continuously eject with Alfvén speeds of VA = 3000 km s−1 but probably with Vz ≈ ±100 km s−1. Plasma up and downflows with VA will within a short duration be blocked between the chromosphere where reconnected flux tubes are piling up, and the slowly rising flux rope. Hence the Petschek slow shock mechanism is difficult to be realized as a major energy converting mechanism.  相似文献   

16.
17.
LAGEOS II general relativity pericenter precession has been analysed in terms of the errors produced by the mismodelling of both the gravitational and non-gravitational perturbations acting on the satellite orbit. The accuracy in the pericenter determination may be considered as an upper-bound value for the estimate of the strength α of a possible new-long-range-interaction described by a Yukawa-like potential. In the present work we have focused on the constraints in α that can be obtained with the current best multi-satellites gravity field model EGM96 (α < 2.6 × 10−10) and also with the first promising models from the CHAMP (α < 1.8 × 10−10) and GRACE (α < 1.2 × 10−10) gravimetric missions. These results represent, potentially, an improvement of two or three orders-of-magnitude with respect to the best constraints obtained in the past with Earth–LAGEOS and Lunar–LAGEOS data (|α| < 10−5–10−8). The impact of the non-gravitational perturbations mismodelling in the final error budget has been determined together with the improvements obtainable in the constraint of the strength α with the proposed LARES satellite.  相似文献   

18.
The geometries, electron affinities and/or electron detachment energies for the CnS and CnO (n = 2–8) molecules and their anions were calculated by using the RCCSD (T) method. The CnS (even n = 4, 6, and 8) and CnO (even n = 6 and 8) anions are found to be substantially more stable than their corresponding neutral species. Several anions are potentially detectable as interstellar molecules.  相似文献   

19.
We present the results of analysis XMM-Newton data of galaxy cluster CL0016+16, which enables us to trace X-ray emission and temperature profile up to the virial radius. We obtained similar results using three different backgrounds. We checked the possibility of detection of cluster emission up to the virial radius with XMM-Newton data with hydrodynamical cosmology simulation from the Adaptive Mesh Refinement technique, code RAMSES by Teyssier [Teyssier, R. Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES. A&A 385, 337, 2002], convolution with XMM-Newton and the data base of the spectra by Sauvageot et al. [Sauvageot, J.-L., Belsole, E., Pratt, G.W. The late merging phase of a galaxy cluster: XMM EPIC observations of A 3266. A&A, 444, 673, 2005]. For the first time we were able to compute the mass of CL0016 up to R200, we found, assuming hydrostatic equilibrium framework, M200 = (1.15 ± 0.11) × 1015M.  相似文献   

20.
On October 8, 2004, the Cluster and Double Star spacecraft crossed the near-Earth (12–19 RE) magnetotail neutral sheet during the recovery phase of a small, isolated substorm. Although they were separated in distance by ∼7 RE and in time by ∼30 min, both Cluster and Double Star observed steady, but highly structured Earthward moving >1000 km/s high speed H+ beams in the PSBL. This paper utilizes a global magnetohydrodynamic (MHD) simulation driven by Wind spacecraft solar wind input to model the large-scale structure of the PSBL and large-scale kinetic (LSK) particle tracing calculations to investigate the similarities and differences in the properties of the observed beams. This study finds that the large-scale shape of the PSBL is determined by the MHD configuration. On smaller scales, the LSK calculations, in good qualitative agreement with both Cluster and Double Star observations, demonstrated that the PSBL is highly structured in both time and space, on time intervals of less than 2 min, and spatial distances of the order of 0.2–0.5 RE. This picture of the PSBL is different from the ordered and structured region previously reported in observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号