首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
针对敏捷卫星的三轴大角度机动控制要求,给出了一种基于轨迹规划的敏捷卫星姿态机动方法.根据目标姿态和当前姿态,按照欧拉轴-角方式,沿特征主轴设计了最小路径的机动轨迹,并采用四个单框架控制力矩陀螺(SGCMG)组成的“金字塔”构型的控制力矩陀螺群(CMGs)进行了大角度机动控制的数学仿真,验证了方法的可行性.  相似文献   

2.
基于气浮台的微小卫星姿态控制实时仿真   总被引:1,自引:0,他引:1  
针对某在研卫星项目任务需求,以单轴气浮台为仿真平台,对单刚体微小卫星的姿态控制问题进行了气浮台实时仿真研究.介绍了微小卫星仿真气浮台系统的硬件组成,论述了仿真系统软件实现的机制,分析了姿态控制系统的基本原理.根据任务要求,对微小卫星三轴正常姿态稳定控制,大角度机动姿态控制模式进行了仿真实验.实验结果表明姿态控制系统的控制精度能够满足任务要求,从而验证了姿态控制系统方案的正确性和可行性.  相似文献   

3.
一种轮控卫星姿态机动变结构控制器   总被引:1,自引:0,他引:1  
针对小卫星3轴反作用轮姿态控制系统的非线性特性,应用误差四元数来描述姿态运动,将星体大角度姿态机动问题转化为误差四元数的调节问题.利用误差四元数和误差角速度建立滑动模态,并基于Lyapunov定理推导出一种姿态机动的引入角加速度负反馈的变结构控制律.仿真结果表明,该控制律能够提高收敛速度,降低机动过程中角速度的超调量和对起始力矩的要求.同时,在模型参数不确定和有外干扰的情况下该控制律也具有全局稳定性和鲁棒性.  相似文献   

4.
飞轮转速过零时卫星姿态的非线性控制   总被引:5,自引:0,他引:5  
当飞轮转速过零时,摩擦力矩发生非线性变化,控制作用力矩出现不确定性,从而影响卫星的姿态控制性能,文章基于一种具有鲁棒性的非线性控制方法,发展了简单,可靠和稳定的非线性反馈控制律,仿真实例表明,该方法能够有效地抑制反作用飞轮转速过零时引起的姿态扰动,从而实现高精度的卫星姿态控制。  相似文献   

5.
一种抑制反作用轮低速摩擦对卫星姿态扰动的方法   总被引:1,自引:0,他引:1  
在现代卫星的姿态控制系统中,反作用轮得到了广泛应用。但是当反作用轮的转速过零时,摩擦力矩会对卫星的姿态产生较大影响。本文采用基于特征模型的黄金分割自适应控制方法,建立了包括反作用轮在内的卫星系统的特征模型,并由此设计了控制律。仿真结果表明,该方法可以有效抑制反作用轮低速摩擦对卫星姿态的扰动,从而可以提高卫星姿态控制精度。  相似文献   

6.
为验证小卫星大角度姿态快速机动与高精度稳定控制能力,基于单轴气浮台硬件仿真环境,提出了一种利用推力器与飞轮组合的联合控制策略.采用相平面控制技术与有限时间控制理论设计控制器,利用推力器实现无超调的快速机动控制,利用飞轮实现有限时间内的高精度稳定控制,使单轴台在有限时间内快速高精度稳定于目标姿态.物理仿真结果表明:该方法在有限时间内完成单轴台快速稳定控制的同时,可有效避免机动过程中的超调现象,且能有效规避推力器的频繁开关与飞轮的过快饱和等问题.  相似文献   

7.
卫星姿态大角度机动的轨迹规划和模型预测与反演控制   总被引:2,自引:0,他引:2  
空间科学观测、态势感知、对地遥感、操控服务等应用对卫星提出了高精度、高稳定度、平稳柔顺大角度姿态机动的需求。采用欧拉角形式,对时变、非线性卫星姿态动力学系统进行了分析与建模,将每一个测控周期视为一个姿态机动过程。基于动力学系统受控运动的规律,在每一个姿态跟踪机动过程中,预测姿态偏差,通过卫星姿态演化的反演得到控制指令。以三角函数为基础,设计了一种卫星姿态大角度机动的运动轨迹规划方法。本文所述的轨迹规划及控制方法具有轨迹跟踪精度高、稳定性好,跟踪和机动过程平稳柔顺的特点。数学仿真验证了该方法的可行性和有效性。 关键词:轨迹规划; 模型预测与反演控制; 卫星姿态; 大角度机动  相似文献   

8.
遥感卫星对姿态机动能力的快速性提出了更高的需求,提出一种路径规划控制方法及在线计算模型,利用大力矩飞轮作为执行机构提供控制力矩,通过大量测试得到修正角度的模型,从而使卫星具备高精度敏捷姿态机动能力.通过数学仿真结果说明了本方法的有效性.  相似文献   

9.
针对"三正交加斜装"反作用轮系统中某两个本体轴上的飞轮失效的欠驱动情况,研究了航天器的姿态控制问题.在系统初始角动量为零的条件下,设计分段解耦控制律,实现了姿态稳定.采用欧拉角描述法建立了欠驱动航天器的姿态动力学方程和运动学方程.在系统初始角动量为零的条件下,通过分析方程的解耦特性,设计了分段解耦控制律.该方法经过6次机动控制,可实现姿态稳定.数值仿真验证了方法的有效性.  相似文献   

10.
资源三号(ZY-3)卫星是一颗民用高分辨率立体测绘卫星.针对ZY-3卫星特点,对控制系统方案进行概述.通过星敏感器相对基准的标定以及星敏感器和陀螺联合滤波实现高精度姿态确定;通过设计结构滤波器和磁卸载力矩的前馈补偿实现三轴高稳定度控制;通过轨迹规划实现大角度侧摆机动.根据卫星在轨运行数据,给出相应指标实现情况,对姿态控制系统的方案和指标满足情况进行在轨验证.  相似文献   

11.
基于变速控制力矩陀螺群动力学模型建立其复合控制方程和分系统解耦约束方程,用矩阵投影方法同步设计得到航天器姿态与能量一体控制复合操纵律,利用Lyapunov方法分析了转子轴向惯量误差对姿态控制分系统的影响.根据飞轮转子轴向惯量与功率输出之间的误差关系设计出功率控制补偿器.复合操纵律中的力矩和功率两解形式相同,约束方程使得姿态与能量控制两分系统解耦,便于进行考虑执行机构特性的闭环控制系统性能分析.考虑飞轮转子轴向惯量误差时,姿态控制分系统的输出耗散特性使其能够保持稳定,而功率控制分系统输出误差与转子轴向惯量误差成比例关系,经过补偿后功率输出能满足控制要求.  相似文献   

12.
为保障卫星的正常在轨运行,地面系统需要对卫星运行状态进行监控预警,其中对卫星各系统的温度监控尤为重要.温度不仅直接反映卫星系统的健康状态,更会对系统器件的性能和寿命造成影响.飞轮作为卫星姿态控制系统的重要组件,其温度变化是识别姿态控制系统状态的重要信息.卫星飞轮温度的预测与预警对卫星在轨稳定运行具有重要意义.本文基于某在轨卫星遥测数据,结合空间环境数据,应用LightGBM机器学习框架研究建立梯度提升决策树模型,对卫星飞轮温度进行预测.经与实际遥测温度值进行对比验证,预测精度可以满足对卫星飞轮温度的监视需求.研究结果可应用于地面系统,对卫星姿态控制系统可能发生的温度异常进行预警,使地面运控人员能够提前规避风险,保障卫星的安全在轨运行.   相似文献   

13.
反作用飞轮系统是卫星等航天器实现姿态调节的执行机构,目前国内卫星姿态调节用的飞轮电机是常规单层磁钢飞轮电机,根据该系统对飞轮电机的具体性能要求,在常规飞轮电机的基础上提出一种双圈磁钢结构的飞轮电机,以此改善常规飞轮电机气隙磁密波形及反电势波形质量不高、转矩波动和电机损耗大等问题。首先采用有限元软件对双圈磁钢飞轮电机进行结构设计,其次在双圈磁钢飞轮电机尺寸确定的情况下,对电机的磁极对数和极弧系数进行优化,由于双圈磁钢飞轮电机的磁钢产生的磁密在气隙中分布相比常规飞轮电机更加均匀,所以最后将其与常规飞轮电机进行定量对比,对比结果表明,双圈磁钢飞轮电机的气隙磁密波形质量比常规飞轮电机的气隙磁密波形质量更好,其转矩脉动更小,提高了反作用飞轮系统的控制精度和稳定性。同时双圈磁钢飞轮电机的电机损耗更小,增大了飞轮电机的运行效率。  相似文献   

14.
针对挠性航天器姿态稳定控制,基于退步控制方法与直接自适应控制方法提出了一种自适应控制策略。首先将挠性航天器模型分解为运动学子系统和动力学子系统,并设计具有理想控制性能的参考模型;然后在姿态小角度的假设下,对满足近似严格正实性的姿态运动学子系统设计了直接自适应中间控制律;最后运用退步控制方法对航天器动力学子系统设计了姿态控制器,并证明了闭环系统的稳定性。理论分析和数值仿真结果表明该控制器对挠性航天器的姿态稳定控制是有效的。  相似文献   

15.
基于扩张状态观测器的飞轮故障检测与恢复   总被引:3,自引:1,他引:2  
飞轮是卫星姿态控制系统中的主要执行部件,实现其自主故障检测与恢复对于维持卫星正常姿态具有很重要的意义.在建立了精确飞轮开环系统模型的基础上,设计了二阶非线性连续扩张状态观测器ESO(Extended State Observer).将飞轮故障视为系统外扰,并假设其余外扰是小量可忽略,则利用此ESO不仅能实时得到飞轮开环系统的状态量,当飞轮发生故障时更能快速准确地估计出故障量.因而无需产生系统残差即可直接进行故障检测,同时根据故障量的大小对系统输入即驱动电压进行补偿,使飞轮转速仍能维持正常值,保证卫星姿态不受故障影响.数值仿真验证了此方法的有效性.  相似文献   

16.
飞行器在高超声速阶段,强非线性耦合与不确定性问题给飞行控制系统的设计带来了巨大的挑战。为了研究高超声速飞行器纵向控制系统中的间耦合关系,基于高超声速纵向非线性模型,对其状态变量组与输入变量组进行了耦合采样分析。同时考虑到系统的不确定性提出了一种分层鲁棒协调控制策略。对高超声速纵向的高度和速度子系统设计鲁棒与耦合补偿控制器,对姿态子系统设计鲁棒与耦合转换控制器。利用Lyapunov稳定性理论来分析整个闭环系统的稳定性。仿真表明该控制方法可以有效的应对纵向系统间的强耦合问题。  相似文献   

17.
    
针对低成本皮纳卫星实现高精度姿态控制问题,提出了一种飞轮与MEMS固体微推力器(SPM)阵列双模式执行机构联合控制方法。采用全局快速终端滑模控制律解决皮纳卫星受扰机动快速稳定的问题,并通过了Lyapunov稳定性证明。推导出能量最优切换模型,即分为飞轮单独控制、飞轮与固体微推力器联合控制以及固体微推力器单独控制3个区间,达到了高稳定精度和固体微推力器最低消耗的双重效果。同时利用蒙特卡罗法方法搜索实际力矩与指令力矩最接近的固体微推力器分配矩阵,以合理安排固体微推力器的点火顺序,使其消耗最少。通过计算机仿真计算表明,提出的飞轮与MEMS固体微推力器阵列双模式执行机构联合控制方法可以使低成本的皮纳卫星完成高精度的控制任务,姿态角精度为0.045 7°,姿态角速率精度为0.006 2 (°)/s。  相似文献   

18.
卫星姿控飞轮通常采用一对精密油润滑角接触球轴承进行旋转支撑.由于飞轮长寿命、高可靠、高精度要求和独特的空间环境,轴承采用微量油润滑.润滑油过多和不足都将导致飞轮轴承摩擦力矩增大和寿命降低,因此存在轴承润滑最佳油量.基于弹流润滑理论,提出了飞轮轴承润滑最佳油量的理论计算方法,并通过球-盘摩擦副进行实验验证.实验结果验证了飞轮轴承润滑最佳油量理论计算方法的有效性.  相似文献   

19.
飞轮振动频谱特征的初步理论分析和验证   总被引:1,自引:0,他引:1  
飞轮振动是影响卫星姿态控制精度的重要因素。通过理论分析的方法初步分析了飞轮振动频谱的基本组成特征,其中包括滚动轴承的振动特性。理论分析表明,飞轮径向振动频谱中主要包括飞轮旋转频率成分及其高次倍频成分。最后利用振动测量实验数据验证理论分析结果的合理性和准确性。  相似文献   

20.
针对升力式再入飞行器体襟翼控制三通道时的非最小相位问题,设计了一种姿态输出跟踪控制方法。选择合理的局部微分同胚,将姿态输入-输出模型转换为正则形式并得到内动态。通过对内动态进行稳定性分析并提出系统非最小相位特性的判据,采用此判据可判定当存在副翼反效时该输出跟踪控制问题为非最小相位控制问题。针对该问题,首先依据内动态与外部动态的线性相关度将正则模型分解为最小相位子系统(纵向通道)和非最小相位子系统(横侧向通道),然后运用动态逆控制技术对2个子系统分别设计状态反馈控制器,最后基于Lyapunov方程和最小范数控制策略在非最小相位子系统中引入非线性辅助控制项以镇定整个姿态控制回路。仿真结果表明了在仅有体襟翼控制的情况下该控制方法能够精确跟踪控制指令并镇定内动态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号