首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
利用2008—2009年的GPS TEC数据,分析了电离层对冕洞引起的重现型地磁活动的响应. 结果表明,在太阳活动低年,电离层TEC表现出与地磁 ap指数(采用全球3h等效幅度指数ap来表征)和太阳风速度相似的9天和13.5天短周期变化,表明TEC的这种短周期特性主要与重现型地磁活动相关. 地磁纬度和地方时分析表明,夜间高纬地区正负相扰动明显,中低纬地区则以正相扰动为主,较大的TEC变幅主要发生在南北半球高纬地区,夜间南半球高纬地区TEC变化相对ap指数变化有相位延迟. 白天中低纬地区正负相扰动明显,TEC短周期变化与ap指数变化相位基本一致. 2008年TEC的9天和13.5天周期变化幅度大于2009年.   相似文献   

2.
2017年9月8日发生了一次强磁暴,Kp指数最大值达到8.利用区域电离层格网模型(Regional Ionosphere Map,RIM)和区域ROTI(Rate of TEC Index)地图,分析了磁暴期间中国及其周边地区电离层TEC扰动特征和低纬地区电离层不规则体的产生与发展情况,同时利用不同纬度IGS(International GNSS Service)测站BJFS(39.6°N,115.9°E),JFNG(30.5°N,114.5°E)和HKWS(22.4°N,114.3°E)的GPS双频观测值,获取各测站的ROTI和DROT(Standard Deviation of Differential ROT)指数变化趋势.结果表明:此次磁暴发生期间电离层扰动先以正相扰动为主,主要发生在中低纬区域,dTEC(differential TEC)最大值达到14.9TECU,随后电离层正相扰动逐渐衰减,在低纬区域发生电离层负相扰动,dTEC最小值达到-7.2TECU;在12:30UT-13:30UT时段,中国南部低纬地区发生明显的电离层不规则体事件;相比BJFS和JFNG两个测站,位于低纬的HKWS测站的ROTI和DROT指数变化更为剧烈,这表明电离层不规则体结构存在纬度差异.   相似文献   

3.
一种电离层TEC格点预测模型   总被引:1,自引:1,他引:0  
基于分析时间序列数据的门限控制单元(GRU)神经网络模型,利用电离层TEC网格点历史数据、太阳活动指数、地磁活动指数作为预测因子,提出一种高精度电离层TEC格点预测模型.对全球60个网格点的数据进行了模型预测和对比实验,得到北半球平均相对精度的均值为83.96%,高于南半球的73.60%,表明预测模型在北半球的适应性更好,且中低纬地区的适应性优于高纬地区;预测模型在磁扰动期的平均相对精度的均值比磁平静期平均相对精度的均值高,约1.95%;与基于递归神经网络(RNN)、长短时记忆网络(LSTM)和双向长短时记忆网络(Bi-LSTM)的电离层TEC单站预测模型相比,本文预测模型的均方根误差(RMSE)平均为原来的80.8%.   相似文献   

4.
利用第24太阳活动周中国多个地区GNSS电离层闪烁监测站数据,统计分析中国中低纬地区电离层闪烁特性.结果显示:电离层闪烁主要发生在春秋分及夜间20:00—02:00LT时段;在28°N以南地区,纬度越低电离层闪烁强度和发生概率越高;电离层闪烁发生概率与太阳活动呈正相关,太阳活动上升年电离层闪烁发生概率高于下降年;不同强度地磁活动条件下,电离层闪烁均可能发生,且与地磁活动强度整体呈负相关.通过研究电离层闪烁统计特性,可以为电离层闪烁机理的深入研究、预报及工程应用提供参考.   相似文献   

5.
基于肇庆地磁台的地磁监测数据和广州气象卫星地面站建立的华南地区GPS电离层闪烁监测网的监测数据, 统计分析了2008年7月至2010年7月太阳活动低年期间广州地区地磁扰动与电离层闪烁的关系. 用肇庆台地磁水平分量H的变化量换算出肇庆地磁指数K, 以此来代表广州地区地磁扰动情况.分析结果表明, 磁暴/强地磁扰动对广州地区电离层闪烁的发生总体表现为抑制作用, 电离层闪烁主要发生在低K值期间, 而在K ≥ 4时电离层闪烁的发生呈下降趋势. 电离层闪烁发生率随季节和地磁活动的变化规律表现在, 春季的弱闪烁发生率、夜间中等以上闪烁发生率和夏季中等以上闪烁的发生率明显与地磁活动指数K相关, 即随$K$指数的增大而减小; 在秋季和冬季闪烁发生率与K指数变化无明显关系. 同时还综合分析了地磁与太阳活动的变化对电离层活动的影响, 广州地区闪烁主要发生在太阳活动较低的磁静日期间.   相似文献   

6.
太阳活动对电离层TEC变化影响分析ormalsize   总被引:1,自引:1,他引:0       下载免费PDF全文
为研究太阳活动对电离层TEC变化的影响,从整体到局部分析了2000—2016年的太阳黑子数、太阳射电流量F10.7指数日均值与电离层TEC的关系,并重点分析了2017年9月6日太阳爆发X9.3级特大耀斑前后15天太阳活动与电离层TEC变化的相关性.结果表明:由2000—2016年的数据整体看来,太阳黑子数、太阳F10.7指数、TEC两两之间具有很强的整体相关性,但局部相关性强弱不均;此次耀斑爆发前后太阳黑子数、太阳F10.7指数和TEC具有很强的正相关特性,太阳活动对TEC的影响时延约为2天;太阳活动对全球电离层TEC的影响不同步,从高纬至低纬约有1天的延迟,且对低纬度的影响远大于中高纬度.太阳活动是影响电离层TEC变化的主要原因,但局部也可能存在其他重要影响因素.   相似文献   

7.
第23太阳活动周武汉站电离层TEC特征分析   总被引:1,自引:1,他引:0  
利用武汉站(30.5°N, 114.4°E)1997年1月1日至2007年12月31日电离层TEC、太阳黑子数及地磁指数等资料, 分析了第23周武汉站TEC的周日变化、季节变化、半年变化以及与太阳活动的相关性等特征; 以2006年4月13-17日发生的磁暴为例, 讨论了武汉站TEC对磁暴的响应以及可能的机理. 结果表明,武汉站电离层TEC在太阳活动高、低年均呈典型的周日变化特征; 冬季异常和半年异常特征明显, 且受太阳活动强弱影响; TEC和太阳黑子数年均值相关系数为0.9611; TEC对磁暴的响应可能是由磁层穿透电场和中性风共同作用导致的, 具体影响机制有待深入研究.   相似文献   

8.
本文探讨磁层一电离层耦合过程内中纬地磁指数的变化特点,并与极光电集流和赤道电集流(指数)变化相比较.相关分析和时序叠加分析均表明,高、中、低纬地磁指数变化可归结为磁层一电离层电动耦合的统一物理图象.有R事件的磁暴主相初期和无R事件的磁扰期内,赤道电集流和中纬地磁指数的变化各不相同.这再次证明,耦合分析中将磁层源扰动的直接穿透作用与经电离层内动力过程的效应二者加以区分和综合研究是很重要的.  相似文献   

9.
利用我国9个中低纬度的电离层观测站在1977-1986年间观测的f0F2月中值,按每月的平均地磁活动指数Ap分为地磁活动高(Ap≥5)和低(Ap<15)两种情况,研究了地磁活动对f0F2月中值平均低纬电离层驼峰区演变的影响,并考察了国际参考电离层(IRI)的误差.  相似文献   

10.
2009年1月平流层爆发性增温期间全球电离层响应的研究   总被引:1,自引:0,他引:1  
2009年1月平流层爆发性增温(Stratospheric Sudden Warming, SSW)事件是有记录以来最强、持续时间最长的一次主增温事件(Major Warming Event, MWE), 期间太阳活动和地磁活动均处于较低的水平, 因此非常有利于研究电离层对平流层增温事件的响应情况. 本文利用COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate)系统提供的掩星数据, 使用Kriging方法分别构建了此次SSW期间及平静期的电离层NmF2, hmF2和110~750km高度范围的垂直积分TEC (简称VTEC)地图, 同时从全球定位导航卫星系统服务组织(International GNSS Service, IGS)发布的全球电离层TEC地图(Global Ionospheric Maps, GIMs)中提取了日固坐标系(Sun-fixed, 地磁纬度和地方时)下全球TEC地图. 通过对比发现, SSW期间与平静期相比, 地磁纬度中低纬电离层参数存在早晨上升, 下午和夜间下降的现象. 利用OSTM/JASON-2卫星高度计观测值进行验证后的结果显示, 此前研究均未有提及的夜间时段电离层参数NmF2, hmF2和TEC (VTEC和IGS TEC)的下降现象的确存在.   相似文献   

11.
针对如何利用GNSS(Global Navigation Satellite System)数据进行电离层扰动监测的问题,提出了一种基于GNSS数据表征全球电离层扰动的方法.利用大约400个GNSS地面站点的观测数据,计算总电子含量(Total Electron Content,TEC)变化率的标准差——ROTI(Ra...  相似文献   

12.
利用武汉电离层观象台研制的GPS TEC的现报方法及现报系统,对东亚地区GPS台网的观测数据进行处理分析,特别对2000年7月14-18日和2003年10月28日至11月1日两次特大磁暴期间的数据进行了对比考察,文中分析了两次磁暴间的电离层响应,得到对应不同磁暴时段电离层TEC的不同变化情况,着重揭示了TEC赤道异常峰的压缩和移动以及赤道异常随时间的压缩—反弹—恢复的过程,并结合高纬电离层的部分响应机制进行了说明,结果显示,两次磁暴期的电离层响应表现出了各自不同的特点,从而反映出因季节变化引起的高纬电离层暴时能量注入的不同而造成的全球性电离层扰动的不同形态,由此看出,磁暴期间电离层TEC的变化直接与太阳扰动发生的时间及其对高纬电离层的耦合有关,若短时期内连续发生多次磁暴,则电离层反应更加复杂,不能简单地当做单一磁暴叠加处理。  相似文献   

13.
电离层总电子含量(TEC)不仅是分析电离层形态的关键参数之一,同时为导航及定位等空间应用系统消除电离层附加时延提供重要支撑。由于电离层TEC的时空变化特征,本文融合因果卷积和长短时记忆网络,以太阳活动指数F10.7、地磁活动指数Dst和电离层TEC历史数据作为特征输入,构建深度学习模型,实现提前24 h预报电离层TEC。进一步利用2005-2013年连续9年的CODE TEC数据,全面评估了模型在北京站(40°N,115°E)、武汉站(30.53°N,114.36°E)和海口站(20.02°N,110.38°E)的预报性能。结果显示不同太阳活动条件下三个站的TEC值与真实测量值的相关系数都大于0.87,均方根误差大都集中在0~1 TECU以内,且模型预报精度与纬度、太阳、地磁活动程度、季节变化相关。与仅由长短时记忆网络构成的预报模型相比,本实验模型均方根误差降低了15%,为电离层TEC预报模型的实际应用提供了参考。   相似文献   

14.
利用行星际太阳风参数与太阳活动指数、地磁活动指数、电离层总电子含量格点化地图数据,首次基于一种能处理时间序列的深度学习递归神经网络(Recurrent Neural Network,RNN),建立提前24h的单站电离层TEC预报模型.对北京站(40°N,115°E)的预测结果显示,RNN对扰动电离层的预测误差低于反向传播神经网络(Back Propagation Neural Network,BPNN)0.49~1.46TECU,将太阳风参数加入预报因子模型后对电离层正暴预测准确率的提升可达16.8%.RNN对2001和2015年31个强电离层暴预报的均方根误差比BPNN低0.2TECU,将太阳风参数加入RNN模型可使31个事件的平均预报误差降低0.36~0.47TECU.研究结果表明深度递归神经网络比BPNN更适用于电离层TEC的短期预报,且在预报因子中加入太阳风数据对电离层正暴的预报效果有明显改善.   相似文献   

15.
We examined performance of two empirical profile-based ionospheric models, namely IRI-2016 and NeQuick-2, in electron content (EC) and total electron content (TEC) representation for different seasons and levels of solar activity. We derived and analyzed EC estimates in several representative altitudinal intervals for the ionosphere and the plasmasphere from the COSMIC GPS radio occultation, ground-based GPS and Jason-2 joint altimeter/GPS observations. It allows us to estimate a quantitative impact of the ionospheric electron density profiles formulation in several altitudinal intervals and to examine the source of the model-data discrepancies of the EC specification from the bottom-side ionosphere towards the GPS orbit altitudes. The most pronounced model-data differences were found at the low latitude region as related to the equatorial ionization anomaly appearance. Both the IRI-2016 and NeQuick-2 models tend to overestimate the daytime ionospheric EC and TEC at low latitudes during all seasons of low solar activity. On the contrary, during high solar activity the model results underestimated the EC/TEC observations at low latitudes. We found that both models underestimated the EC for the topside ionosphere and plasmasphere regions for all levels of solar activity. For low solar activity, the underestimated EC from the topside ionosphere and plasmasphere can compensate the overestimation of the ionospheric EC and, consequently, can slightly decrease the resulted model overestimation of the ground-based TEC. For high solar activity, the underestimated EC from the topside ionosphere and plasmasphere leads to a strengthening of the model underestimation of the ground-based TEC values. We demonstrated that the major source of the model-data discrepancies in the EC/TEC domain comes from the topside ionosphere/plasmasphere system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号