首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 101 毫秒
1.
针对星敏感器在近地空间导航应用需求,开展了短波红外恒星探测信噪比分析方法研究。基于恒星目标与天空背景辐射特性,构建了恒星探测信噪比模型,并结合光学系统及图像传感器参数完成了仿真试验。结果表明,同一星等及太阳天顶角下,Ks波段下的恒星探测信噪比最大,H波段次之,J波段最小;同一太阳天顶角及波段下,星等越小,恒星探测信噪比越大;同一星等及波长下,太阳天顶角越大,即恒星与太阳之间角距越大,恒星探测信噪比越大。本文可为新一代近地空间全天时星敏感器系统的方案设计、指标论证、评估应用提供可靠的理论方法与技术支持。  相似文献   

2.
一种星图识别的星体图像高精度内插算法   总被引:12,自引:3,他引:9  
介绍了一种从星敏感器成像中高精度提取恒星位置和星等的方法.这种方法把星光成像看成是高斯点扩散函数模型,利用线性内插和最小二乘法方法,拟合得到高斯曲面参数.从高斯曲面模型中得到亚像素级的恒星位置和恒星星等.理论研究表明,曲面拟合法提取的星体位置精度高于传统的质心法.由于直接进行高斯曲面拟合计算非常复杂,为了简化计算,利用了星体成像点附近x,y方向的非线性插值方法,分别得到不同的曲面系数.仿真结果显示,在信噪比小于0.05时,定位精度小于1/20像素,星等误差小于5%.  相似文献   

3.
面向短波红外星敏感器在机载平台、弹载平台以及舰载平台的应用需求,设计了H波段折反式星敏感器光学系统。该折反式镜头总长为232mm、焦距为704.3mm、全视场为2°、F数为3.9、探测极限星等为6。结果表明:调制传递函数值接近衍射极限,在奈奎斯特采样频率处大于0.5;各视场径向能量趋于一致,弥散斑可覆盖2~3像元;相对畸变小于0.1%,满足指标要求。本文可为近地空间短波红外星敏感器的工程应用提供理论基础与技术支持。  相似文献   

4.
星模拟器是星敏感器的标定设备之一,主要用于星敏感器的地面调试.星模拟器的驱动软件是该系统的重要组成部分.本文概要地介绍了星敏感器系统的组成并针对对星模拟器软件设计中任务星库的选取、任务星库的分区、星点位置的确定、星等的模拟问题进行了讨论.  相似文献   

5.
离轴反射式星敏感器地面标定设备光学系统设计   总被引:1,自引:0,他引:1       下载免费PDF全文
在星敏感器随航天器升空完成姿态测量任务之前,需在地面对其进行标定试验.为满足星敏感器更高精度标定要求,针对常规地面标定设备光学结构在应对大口径、长焦距、宽光谱需求时存在的弊端,设计了一种离轴光管作为准直光学系统,研究了离轴光管装调方法,并对像质进行了评价.重点研究了一套照明系统对星点亮度进行精确控制,采用LED阵列式背光板为光源,并利用照度计对光源亮度进行多次测试,测得的数据表明可对7个连续星等进行模拟,相邻星等间亮度模拟误差小于0.8%.所设计的光学系统可为研制深空探测星敏感器提供地面标定基础.   相似文献   

6.
航天器自主天文导航中,通常用星敏感器和地平仪测量的星光角距作为观测量,星敏感器安装方位角是影响导航精度的一个重要因素.针对星光角距作为观测量的自主天文导航方法,分别采用扩展卡尔曼滤波EKF(Extended Kalman Filter)和Unscented卡尔曼滤波UKF(Unscented Kalman Filter)2种滤波方法进行仿真计算,研究了星敏感器安装方位角对导航精度的影响规律,得出星敏感器的最佳安装方位角,并考察了其在不同轨道参数下的适用性,为星敏感器的安装和星敏感器视场内观测星的选取提供了依据.仿真计算表明,本结论对其它利用"星光+地平"的自主导航方法也适用.   相似文献   

7.
为对甚高精度星敏感器进行地面标定和精度测试,提出甚高精度星模拟器的研制,其模拟精度应优于0.5″.在甚高精度星模拟器设计中,对星模拟器的星图显示与控制系统进行了重点研究.根据模拟精度要求,提出利用星点板作为星图显示器件.采用单点可控矩阵式LED照明系统作为星点板光源,完成小天区静态形式的动态星图模拟.通过设计星图显示控制系统,编写控制软件,实现每个LED的亮灭和灰度值控制,完成了星图变换和星等模拟.实验结果表明,星图显示精度小于0.5″,可以实现动态变换以及星等模拟,以满足对甚高精度星敏感器的地面标定和精度测试要求.  相似文献   

8.
基于Bipod结构的星敏感器遮光罩安装结构优化设计   总被引:1,自引:0,他引:1  
星敏感器是航天器中常用的姿态确定仪器,其测量精度较高,且受外界环境因素、尤其是温度因素影响显著.星敏感器的热稳定性对其精度有着重要的影响,为改善星敏感器的热稳定性,提出一种基于Bipod结构的星敏感器遮光罩安装结构优化设计.通过仿真分析,此设计极大的改善了星敏感器结构的热稳定性,提高了星敏感器在轨工作时光轴指向精度的稳定性,且星敏感器的强度与刚度条件均能满足安全设计要求.  相似文献   

9.
视场内导航星分布的预测   总被引:1,自引:0,他引:1  
给出理想情况下视场内导航星分布模型的基础上,根据敏感器的星等门限和测量精度,进一步实现了存在星等误差情况下导航星分布的预测,使得该模型更为接近真实的情况.实验表明,采用该模型获得的分布与用MonteCarlo方法获得的统计分布极为接近,证明了该模型的正确性和有效性,从而得到了一种事先对视场内导航星分布作出较为准确估计的新的方法.   相似文献   

10.
星敏感器低频误差在轨校准方法研究   总被引:1,自引:0,他引:1  
研究星敏感器低频误差在轨校准问题.星敏感器低频误差主要由周期性的空间热环境变化造成,会对卫星姿态确定精度造成显著影响.针对这一问题,提出一种星敏感器低频误差校准新方法,通过扩维卡尔曼滤波同时估计卫星姿态和低频误差参数.研究表明,采用所提低频误差校准方法能够显著提高姿态确定系统的性能.基于在轨卫星上的星敏感器遥测数据建立了用于数学仿真的星敏感器低频误差模型,数学仿真结果验证了低频误差校准方法的有效性.  相似文献   

11.
星敏感器结构设计与安装过程会产生多种误差,主要误差源有星敏感器像平面主点误差、主距误差、倾斜误差与旋转误差,这些误差影响了星敏感器在轨标定的精度。本文根据星敏感器的误差模型,提出了一种高精度的星敏感器在轨标定方法。在已知含有误差的像平面的基础上,构造一个虚拟的像平面。当粒子群优化算法使含有误差的像点投影到虚拟像平面上的坐标与无误差时像点的坐标一致时,再利用Quest解算出三轴姿态角求得两个像平面之间的姿态矩阵,得出两像平面之间的关系。结果表明:星敏感器姿态确定精度较高且比较稳定。这种方法与传统标定方法的优势在于不依靠陀螺信息,原理简单,提高了数据的准确性。  相似文献   

12.
距离及其变化率跟踪数据的数学处理   总被引:6,自引:3,他引:3  
运用雷达或光学设备对航天飞行器进行跟踪测量可以获得距离及其变化率的观测数据。由于测量设备的精度、环境条件等多方面的原因,这些测量数据都是有误差的。除了测距及距离变化率的随机误差外,还有测距的系统误差。通过建立适当的数学模型,运用样条函数和回归分析方法给出一种估计距离、距离变化率及测距系统误差的方法,该方法很容易实现计算。理论分析和仿真计算表明,该方法具有很高的精度。  相似文献   

13.
针对高动态条件下星图拖尾导致惯性星光组合定姿精度下降甚至无法定姿的问题,提出了一种基于乘性扩展卡尔曼滤波的惯性星光深度组合姿态确定方法.利用星敏感器观测信息修正姿态误差,补偿陀螺漂移,并建立了陀螺输出的角度变化量与星图像移的关系,利用陀螺输出信息估计星图拖尾的模糊参数,采用维纳滤波复原方法对产生拖尾的星图进行复原以提高星图信噪比和观测精度.仿真结果表明该方法可以有效提高星像质心提取精度和星图识别率,对初始姿态误差修正更快,且不存在星图误匹配的情况,保证了惯性星光组合定姿方法在高动态条件下仍能保持较高的精度.  相似文献   

14.
 目前对星敏感器星像定位的研究多限于静态情况,而卫星转动过程中,在曝光期间星像在像平面不断移动,从而影响星像定位的精度,重点分析动态情况下APS星敏感器星像目标中心的提取精度。首先分析采用质心法计算星像目标中心的误差源,提出动态精度的估计方法,并推导相应的计算公式;进而以给定的APS星敏感器参数为基础,研究了计算窗口、曝光时间等精度影响因素的选择方法;最后通过仿真进行了验证。  相似文献   

15.
一种利用星敏感器的航天器自主定位方法   总被引:4,自引:2,他引:4  
提出用星敏感器和地平仪测量星光与地平之间的“星光仰角”为观测量,用推广卡尔曼滤波方法来实时估计航天器的最佳位置的自主定位方法。分析比较了同时瞄准恒星的个数、星敏感器的精度以及改变采样周期对航天器定位误差的影响。  相似文献   

16.
基于Allan方差法的光纤陀螺建模与仿真   总被引:1,自引:0,他引:1  
介绍了一种与实际情况相接近的陀螺模型,并给出了根据光纤陀螺的角度随机游走(ARW)和角速率随机游走(RRW)系数模拟产生陀螺随机误差数据的方法.角度随机游走和角速率随机游走系数可通过Allan方差法获得.理论分析表明,模拟产生的陀螺随机误差具有与实际的角度随机游走和角速率随机游走误差相一致的功率谱密度.通过仿真对文中所述的模拟产生陀螺随机误差的方法进行了验证,表明了方法的有效性.该方法可用于分析由陀螺和星敏感器构成的卫星姿态确定系统的性能.  相似文献   

17.
仅测角自主导航方法具有设备简单、复杂度低,功耗低的优点,在空间任务中具有广泛的应用前景.针对中远距离下空间目标特征少的特点,提出了一种利用基于OPTICS聚类算法的空间目标检测方法,可用于仅测角导航过程中的目标检测.对原始星图进行预处理提取星点及目标点,并结合星图识别的结果选择部分帧,使用经过改进的OPTICS聚类方法获得目标运动轨迹.最后,使用本文中的算法对软件仿真出的含有目标的高精度星图进行处理验证了算法的可行性.在卫星相对于空间目标抵近过程中,目标检测的水平误差及垂直误差小于0.15°的帧数分别占到了85.4%以及99.6%.相比AVANTI实验中的目标检测方法,减少了在轨任务中相关参数的调节,进一步提升了算法的自主性.  相似文献   

18.
An on-board autonomous navigation capability is required to reduce the operation costs and enhance the navigation performance of future satellites. Autonomous navigation by stellar refraction is a type of autonomous celestial navigation method that uses high-accuracy star sensors instead of Earth sensors to provide information regarding Earth’s horizon. In previous studies, the refraction apparent height has typically been used for such navigation. However, the apparent height cannot be measured directly by a star sensor and can only be calculated by the refraction angle and an atmospheric refraction model. Therefore, additional errors are introduced by the uncertainty and nonlinearity of atmospheric refraction models, which result in reduced navigation accuracy and reliability. A new navigation method based on the direct measurement of the refraction angle is proposed to solve this problem. Techniques for the determination of the refraction angle are introduced, and a measurement model for the refraction angle is established. The method is tested and validated by simulations. When the starlight refraction height ranges from 20 to 50 km, a positioning accuracy of better than 100 m can be achieved for a low-Earth-orbit (LEO) satellite using the refraction angle, while the positioning accuracy of the traditional method using the apparent height is worse than 500 m under the same conditions. Furthermore, an analysis of the factors that affect navigation accuracy, including the measurement accuracy of the refraction angle, the number of visible refracted stars per orbit and the installation azimuth of star sensor, is presented. This method is highly recommended for small satellites in particular, as no additional hardware besides two star sensors is required.  相似文献   

19.
Pulsar navigation is a promising autonomous navigation system for spacecraft, which is applicable to the entire solar system. However, the pulsar’s directional error and the onboard clock error are two types of systematic errors that seriously reduce navigation accuracy. To solve this problem, a star angle/double-differenced pulse time of arrival(SA/DDTOA) integrated navigation method is proposed. Since measurements obtained by observing different pulsars contain the same clock errors, the measurements can be differed to eliminate the common clock error. Then, the pulsar-differenced measurements at neighbor filtering time can be differed to suppress the effect of the pulsar’s directional error on navigation precision. Star angle is used to obtain absolute navigation information, which denotes the angles between the light of sight of Jupiter and that of its background stars. Simulation results demonstrate that the proposed method can eliminate the influence of the onboard clock error and greatly weaken the effects of the pulsar’s directional error. The navigation accuracy is better than the traditional star angle/pulse time of arrival integrated navigation method and star angle/pulse time difference of arrival integrated navigation method. In addition, the navigation accuracy of the SA/DDTOA integrated navigation method is less affected by Jupiter’s ephemeris error. This work greatly reduces the influence of common systematic errors in pulsar navigation on navigation accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号