首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 531 毫秒
1.
航天员受银河宇宙线辐射的剂量计算   总被引:1,自引:0,他引:1  
在近地空间(LEO)和深空探测中,航天员遭受的辐射风险主要来自于银河宇宙线(GCR)照射.银河宇宙线的辐射剂量是航天员辐射风险评价的基础.国际放射防护委员会(ICRP)于2013年提出了新的航天员空间辐射剂量估算方法,以更准确给出空间重离子辐射的剂量.基于此方法,开发了宇宙线粒子在物质中输运的蒙特卡罗程序,并在程序中实现用中国成年男性人体数字模型来仿真航天员.采用该程序计算了粒子(Z=1~92)各向同性照射航天员时器官的通量-器官剂量转换因数,并估算出航天员在近地轨道空间受银河宇宙线辐射的剂量.  相似文献   

2.
40 发现号(STS-39) 飞行时间:1991 年 4 月 28 日~5 月 5日。 航天员(6 人):迈克·科茨、哈博·麦克莫纳格勒、盖恩·布鲁福德、布莱因·哈蒙德、拉斯·维奇和格雷戈里·哈伯。 飞航任务:施放 1 颗为战略防御计划实验服务的科学卫星。41 哥伦比亚号(STS-40) 飞行时间:1991 年 6 月 5 日~14 日 航天员(7 人):布里安·奥康纳、希德尼·古铁雷斯、詹姆斯·巴吉安、安德鲁·加夫尼、米丽·休斯–富尔德福(女)、塔玛拉·杰尼根(女)和蕾亚·塞登(女)。 飞行任务:首次载 3 名女航天员,在太空收集和测试航天员的血样、尿样和心、肺、肾功…  相似文献   

3.
1998年10月29日,美国发现号航天飞机从佛罗里达州卡纳维拉尔角的肯尼迪航天中心发射升空,图为升空瞬间。航天员走下航天飞机与前来迎接的官员握手,图中正走下舷梯者为航天史上最年长的航天员约翰·格伦。77岁的美国航天员约翰·格伦(后)和日本女航天员向井...  相似文献   

4.
65奋进号(STS-68)□□飞行时间:1994年9月30日~10月11日。航天员(6人):迈克·贝克、特伦斯·威尔考特、托马斯·琼斯、史蒂文·史密斯、丹尼尔·布希和彼得·威索夫。飞行任务:在太空用雷达实验室观测地面600多个目标,用机载空气污染测量仪测量全球空气污染分布情况,进行29项研制试验和医学生物学实验。66阿特兰蒂斯号(STS-66)飞行时间:1994年11月3~14日。航天员(6人):多纳尔德·麦克莫纳格、科迪斯·布朗、艾伦·奥乔亚(女)、斯科特·帕拉津斯基、约瑟夫·坦纳和让-弗朗科斯·克莱瓦(法国)。飞行任务:搭载国际应用与科学大气空间实验…  相似文献   

5.
1965年3月18日莫斯科时间上午10时,上升2号载人飞船从拜科努尔发射场升空,进入497.7km×173.5km、倾角64.79°的轨道,与预定轨道几乎相差无几。飞船上载有两名航天员:机长帕维尔·伊万诺维奇·别利亚耶夫和驾驶员阿列克谢·阿尔奇波维奇...  相似文献   

6.
欧空局(ESA)的航天员托马斯·赖特尔(德国人)于今年9月3日与俄罗斯航天员谢尔盖V.阿弗杰耶夫和尤里P.希什科一起乘俄罗斯联盟TM-22飞船从拜科努尔发射场升空,飞船于9月5日与和平号空间站前对接口对接。赖特尔准备在和平号空间站进行135天的飞行。两名俄罗斯航天员替换了今年7月初由阿特兰蒂斯号航天飞机送上和平号上的阿纳托利·索洛维耶夫和尼戈拉依·布达林,后者已于9月11日乘联盟TM-21飞船返回地面。只有原苏联和俄罗斯航天员的空间飞行时间超过赖特尔预定的4~5个月的飞行。他将打破由非俄罗斯航天…  相似文献   

7.
1995年3月14日,拜科努尔当地时间11时11分(格林尼治时间6时11分),俄罗斯联盟TM-21飞船从哈萨克斯坦的拜科努尔发射场发射升空。飞船上载有俄罗斯和平号空间站第18考察组的3名航天员:俄罗斯飞行指令长弗拉基米尔·德朱罗夫、飞行工程师杰纳迪·斯特列卡洛夫和美国航天员诺曼E.萨加德博士。这是俄罗斯(包括原苏联)的第82次载人空间飞行和第22次国际飞行,也是美国航天员首次参加的俄联盟TM飞船/和平号空间站飞行(在此之前,俄航天员谢尔盖K.克里夫廖夫于1994年2月3日~11日参加了美国发现号…  相似文献   

8.
航天简讯     
俄男女航天员双创太空飞行新纪录联盟TM-21飞船的乘员亚历山大·维克多连科、海伦娜·康达科娃和瓦列利·波利亚科夫于1995年3月22日莫斯科时间7时04分在哈萨克斯坦的阿卡利克东北36千米处着陆。至此,波利亚科夫由于在这次飞行期间在失重环境下生活了长达14个多月,而成了太空飞行时间最长的记录保持者,他的累计飞行时间长达22个月,共计678天16小时。由此证明,从医学角度上看,人类向火星的飞行是完全可以的。因为向火星飞行一次需要16~18个月,波利亚科夫一开始就瞄准了这个飞行时间。然而,在和平号使…  相似文献   

9.
格林威治时间2000年10月31日07∶52,1枚联盟-Y火箭从拜科尔航天基地1号发射台升空,把载有国际空间站首批常住航天员的联盟TM-31宇宙飞船送入太空,从而拉开了人类在国际空间站上永久定居的序幕。它标志着太空探索的历史在长期冷战结束后开始一个新的篇章。1 太空“三剑客”参加这次飞行的航天员共有3名,他们分别是美国航天员威廉·谢泼德、俄罗斯航天员尤里·吉德津科和谢尔盖·克里卡廖夫,其中谢泼德是这个“国际空间站第1国际混合科学考察组”的组长(也称站长),吉德津科是飞行指令长(也是驾驶员),克里卡廖夫是随船工程师。自从1984年首…  相似文献   

10.
1996年3月22日东部时间3时15分,美国阿特兰蒂斯号航天飞机从肯尼迪航天中心发射升空。这是美国航天飞机的第76次飞行,飞行任务代号为STS-76。这次飞行任务乘员组共有6名航天员,他们是:指令长凯文·奇尔顿、驾驶员理查德·西尔福斯、1号飞行任务专家罗纳德·塞加、2号飞行任务专家迈克尔·理查德·克里福德、3号飞行任务专家琳达·戈德温(女)和4号飞行任务专家香农·露西德(女)。香农·露西德将留在和平号空间站上,作为空间站上的一名研究人员,然后在阿特兰蒂斯号航天飞机下次飞行(任务代号STS-79)时返回。图1显现了这6位航…  相似文献   

11.
In order to make an assessment of radiation risk during manned missions in space, it is necessary first to have as accurate an estimation as possible of the radiation environment within the spacecraft to which the astronauts will be exposed. Then, with this knowledge and the inclusion of body self-shielding, estimations can be made of absorbed doses for various body organs (skin, eye, blood-forming organs, etc.). A review is presented of our present knowledge of the radiation environments and absorbed doses expected for several space mission scenarios selected for our development of the new radiation protection guidelines. The scenarios selected are a 90-day mission at an altitude (450 km) and orbital inclinations (28.5 degrees, 57 degrees and 90 degrees) appropriate for NASA's Space Station, a 15-day sortie to geosynchronous orbit and a 90-day lunar mission. All scenarios chosen yielded dose equivalents between five and ten rem to the blood forming organs if no large solar particle event were encountered. Such particle events could add considerable exposure particularly to the skin and eye for all scenarios except the one at 28.5 degrees orbital inclination.  相似文献   

12.
The Liulin-5 experiment is a part of the international project MATROSHKA-R on the Russian segment of the ISS, which uses a tissue-equivalent spherical phantom equipped with a set of radiation detectors. The objective of the MATROSHKA-R project is to provide depth dose distribution of the radiation field inside the sphere in order to get more information on the distribution of dose in a human body. Liulin-5 is a charged particle telescope using three silicon detectors. It measures time resolved energy deposition spectra, linear energy transfer (LET) spectra, particle flux, and absorbed doses of electrons, protons and heavy ions, simultaneously at three depths along the radius of the phantom. Measurements during the minimum of the solar activity in cycle 23 show that the average absorbed daily doses at 40 mm depth in the phantom are between 180 μGy/day and 220 μGy/day. The absorbed doses at 165 mm depth in the phantom decrease by a factor of 1.6–1.8 compared to the doses at 40 mm depth due to the self-shielding of the phantom from trapped protons. The average dose equivalent at 40 mm depth is 590 ± 32 μSV/day and the galactic cosmic rays (GCR) contribute at least 70% of the total dose equivalent at that depth. Shown is that due to the South Atlantic Anomaly (SAA) trapped protons asymmetry and the direction of Liulin-5 lowest shielding zone the dose rates on ascending and descending nodes in SAA are different. The data obtained are compared to data from other radiation detectors on ISS.  相似文献   

13.
The radiation environment on the surface of the Moon presents a new source of particles resulting from the interaction of incoming solar protons and galactic cosmic rays with the lunar regolith. Here we present a study of the fluence profile of primary and secondary particles on the top 1 m layer of lunar regolith for the spectrum of one of the hardest spectrum solar event, that of February 1956. Different regolith compositions and their influence in proton and neutron production and backscattering is considered, as well as the nature of the backscattered radiation. Simple geometry Monte Carlo simulations have been used also for calculating regolith shielding properties, and it is shown that a layer of at least 50 cm regolith is needed for significantly reducing the dose levels received by astronauts in a hypothetical lunar habitat.  相似文献   

14.
月球表面没有磁场的保护,粒子辐射是人类在月球活动的重要风险要素。概述了月球的辐射环境以及辐射来源,并介绍了月球探测的现状,特别提及了近年来几个较为典型的月球辐射探测实例及其探测结果;介绍了我国“嫦娥4号”上搭载的月表中子与辐射剂量探测仪(Lunar Lander Neutron&Dosimetry,LND)的科学目标及其技术指标。LND的科学目标主要包括:载人登月辐射剂量的测量、月球南极艾特肯盆地水含量的测量、艾特肯盆地FeO含量的测量,以及为日球层科学的研究提供依据。  相似文献   

15.
获取具有原态层理信息的月壤剖面样品是我国载人登月人工采样任务的重要目标之一。对比国外地外天体采样技术,提出了一种适合宇航员手持操作的高频冲击式采样装置。采样装置采用高频冲击作用下颗粒的单向运移原理,可保证样品的原态层理信息,降低了采样功耗,提高了取芯率;取芯机构表面的各向异性摩擦形貌增强了颗粒单向运移效果,提高了采样效率;改变冲击频率进行取芯试验,得到了冲击频率与表面形貌对取芯率的影响规律,为我国载人登月人工采样装置的设计研究提供技术参考。  相似文献   

16.
Radiation in low Earth orbit (LEO) is mainly composed of galactic cosmic rays (GCR), solar energetic particles and particles in SAA (South Atlantic Anomaly). The biological impact of space radiation to astronauts depends strongly on the particles’ linear energy transfer (LET) and is dominated by high LET radiation. It is important to measure the LET spectrum for the space radiation field and to investigate the influence of radiation on astronauts. At present, the preferred active dosimeters sensitive to all LET are the tissue equivalent proportional counter (TEPC) and the silicon detectors in various configurations; the preferred passive dosimeters are CR-39 plastic nuclear track detectors (PNTDs) sensitive to high LET and thermoluminescence dosimeters (TLDs) as well as optically stimulated luminescence dosimeters (OSLDs) sensitive to low LET. The TEPC, CR-39 PNTDs, TLDs and OSLDs were used to investigate the radiation field for the ISS mission Expedition 13 (ISS-12S) in LEO. LET spectra and radiation quantities (fluence, absorbed dose, dose equivalent and quality factor) were measured for the space mission with different dosimeters. This paper introduces the role of high LET radiation in radiobiology, the operational principles for the different dosimeters, the LET spectrum method using CR-39 detectors, the method to combine the results measured with TLDs/OSLDs and CR-39 PNTDs, and presents the LET spectra and the radiation quantities measured and combined.  相似文献   

17.
The RADiatiOn Monitor (RADOM) is a miniature dosimeter-spectrometer that flew onboard the Chandrayaan-1 lunar mission in order to monitor the local radiation environment. Primary objective of the RADOM experiment was to measure the total absorbed dose, flux of surrounding energetic particles and spectrum of the deposited energy from high energy particles both en-route and in lunar orbit. RADOM was the first experiment to be switched on after the launch of Chandrayaan-1 and was operational until the end of the mission. This paper summarizes the observations carried out by RADOM during the entire life time (22 October 2008–31 August 2009) of the Chandrayaan-1 mission and compares the measurement by RADOM with the radiation belt models such as AP-8, AE-8 and CRRESS.  相似文献   

18.
Understanding the balance between incoming radiation from the Sun and outgoing radiation from Earth is of critical importance in the study of climate change on Earth. As the only natural satellite of Earth, the Moon is a unique platform for the study of the disk-wide radiation budget of Earth. There are no complications from atmosphere, hydrosphere, or biosphere on the Moon. The nearside of the Moon allows for a focus on the solar radiation during its daytime, and on terrestrial radiation during its nighttime. Additionally, lunar regolith temperature is an amplifier of the terrestrial radiation signal because lunar temperature is proportional to the fourth square root of radiation as such is much more sensitive to the weak terrestrial radiation in nighttime than the strong solar radiation in daytime. Indeed, the long-term lunar surface temperature time series obtained inadvertently by the Heat Flow Experiment at the Apollo 15 landing site three decades ago may be the first important observation from deep space of both incoming and outgoing radiation of the terrestrial climate system. A revisit of the lunar surface temperature time series reveals distinct characteristics in lunar surface daytime and nighttime temperature variations, governed respectively by solar and terrestrial radiation.  相似文献   

19.
Space weather and related ionizing radiation has been recognized as one of the main health concerns for the International Space Station (ISS) crew. The estimation of the radiation effect on humans outside the ISS requires at first order accurate knowledge of their accumulated absorbed dose rates, which depend on the global space radiation distribution, solar cycle and local variations generated by the 3D mass distribution surrounding the ISS. The R3DE (Radiation Risks Radiometer-Dosimeter for the EXPOSE-E platform) on the European Technological Exposure Facility (EuTEF) worked successfully outside of the European Columbus module between February 2008 and September 2009. A very similar instrument named R3DR for the EXPOSE-R platform worked outside the Russian Zvezda module of the ISS between March 2009 and August 2010. Both are Liulin-type detectors, Bulgarian-built miniature spectrometer-dosimeters. The acquired approximately 5 million deposited energy spectra from which the flux and absorbed dose rate were calculated with 10 s resolution behind less than 0.41 g cm−2 shielding. This paper analyses the spectra collected in 2009 by the R3DE/R instruments and the long-term variations in the different radiation environments of Galactic Cosmic Rays (GCR), inner radiation belt trapped protons in the region of the South Atlantic Anomaly (SAA) and relativistic electrons from the Outer Radiation Belt (ORB). The R3DE instrument, heavily shielded by the surrounding structures, measured smaller primary fluxes and dose rates from energetic protons from the SAA and relativistic electrons from the ORB but higher values from GCRs because of the contribution from secondary particles. The main conclusion from this investigation is that the dose rates from different radiation sources around the International Space Station (ISS) have a large special and temporal dynamic range. The collected data can be interpreted as possible doses obtained by the cosmonauts and astronauts during Extra Vehicular Activities (EVA) because the R3DE/R instruments shielding is very similar to the Russian and American space suits average shielding (,  and ). Fast, active measurements are required to assess accurately the dose accumulated by astronauts during EVA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号