首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
后掠角对后掠机翼边界层稳定性及转捩的影响   总被引:1,自引:1,他引:0  
后掠机翼边界层流动稳定性及转捩对翼型的设计及优化有着重要的参考价值,而机翼后掠角是引起后掠机翼边界层横流失稳的关键参数之一.以NACA0012翼型为研究对象,通过求解三维可压缩Navier-Stokes方程计算了展向无限长后掠机翼的基本流场;通过求解Orr-Sommerfeld方程得到了扰动Tollmien-Schishting波演化的中性曲线及幅值曲线,研究了后掠角对后掠机翼边界层流动稳定性的影响;最后采用eN方法进行了转捩预测.研究发现,随后掠角的增大,横流强度和扰动幅值放大指数n均先增加后减小,且后掠角在40°~50°之间横流强度达到最大值.当后掠角在50°左右时,用转捩预测eN方法计算的幅值增长指数N值最大,导致转捩发生所需的初始扰动幅值最小,转捩最易发生.   相似文献   

2.
  总被引:1,自引:1,他引:0  
攻角是影响后掠机翼边界层横流稳定性的关键参数之一.以NACA0012翼型为研究对象,通过求解三维可压缩Navier-Stokes方程计算了展向无限长后掠机翼的基本流场;通过求解Orr-Sommerfeld方程得到了扰动波的中性曲线及增长率演化曲线,基于线性稳定性理论(LST)研究了攻角对后掠机翼边界层流动稳定性的影响;最后采用转捩预测eN方法进行了转捩预测.研究发现,扰动波的增长在背风面受到抑制,在迎风面受到增强;转捩首先发生在迎风面,当扰动速度为来流速度的0.05%时,转捩发生的N值在6左右,转捩发生的位置在0.1~0.2个弦长之间.  相似文献   

3.
弹性变形对柔性机翼气动特性影响分析   总被引:4,自引:3,他引:1  
针对大展弦比全复合材料机翼的非线性静气弹响应行为,采用CFD/CSM(Computational Fluid Dynamics/Computational Structural Mechanics)弱耦合方法,使用三维N-S方程和结构力学方程以及动网格生成技术和压强插值技术,通过高精度的数值模拟,求解了大展弦比柔性机翼在结构几何非线性变形状态下的非线性静气弹响应问题.算例分别对典型的大展弦比复合材料前掠机翼和后掠机翼进行了求解,计算结果表明,与前掠翼相比,后掠翼的升力系数明显降低,升阻比降低,严重偏离了刚性机翼的设计点,在柔性机翼的气动设计中必须加以考虑.   相似文献   

4.
介绍了开源计算流体力学软件OpenFOAM(Open Field Operation and Manip-ulation)及面向对象编程技术,并利用其对三维斜掠后台阶流动进行了数值模拟.通过对无斜掠角度情况下用OpenFOAM计算得到的流场速度型和展向涡强度场分布与实验数据的对比研究,证明其具有良好的计算精度和可靠性.通过对不同斜掠角度台阶下游流线与压力分布的详细研究发现随着斜掠角度从0°增加到60,°回流区涡团结构和再附距离均发生了显著变化.其总体趋势是再附距离在30°后会急剧缩小,旋涡强度也会减弱.  相似文献   

5.
基于S-A湍流模型的全三维数值模拟方法,对带间隙的大小叶片和常规直叶栅亚音泄漏流动进行了计算与分析.结果表明:短弦长小叶片对大叶片吸力面负荷分布、泄漏量以及泄漏涡的产生位置的控制作用较弱;攻角增大后,大叶片泄漏发展到小叶片尖隙导致二次泄漏,恶化叶栅性能;当小叶片靠近吸力面时表现的更为强烈;存在壁面移动时,二次泄漏更容易发生,但间隙流动得到改善;由于攻角变化导致了大叶片泄漏与小叶片尖隙干扰位置变化,表现出不同的叶尖流动模式.   相似文献   

6.
开发了三维数值模拟程序研究轴流跨音转子叶尖间隙流动,应用高雷诺数k-ε湍流模型加壁面函数的方法,计算了轴流跨音转子NASA Rotor37在设计转速下的流场.叶尖间隙采用分区的H型网格和主流区连续对接耦合计算,没有用间隙模型,也没有考虑Vena收缩效应而减小间隙量.在用有限体积法对Navier-Stokes方程和湍流方程进行空间离散的过程中采用了交错网格的方法将N-S方程与湍流方程紧密地耦合在一起,从而提高了计算精度.计算结果和实验数据进行了详细的比较和分析.结果表明,中部叶展具有与实验结果非常一致的流场特征,根、尖区流场则因涡粘假设和激波问题的存在而使流动细节与实验结果略有偏差.  相似文献   

7.
多单元直排塞式喷管发动机性能   总被引:3,自引:0,他引:3  
为了了解优化设计的塞式喷管的性能及燃气流动中热力学参数变化对性能的影响,对比钟型喷管与塞式喷管的高度特性,从曲线坐标下的三维平均雷诺N-S方程和Euler方程出发,采用LU时间隐式格式、MUSCL空间离散方法,发展了模拟塞式喷管三维流场的数值程序.计算了从喉部圆转方内喷管的性能,比较了冻结和变化热力学参数对塞式喷管性能的影响及塞式喷管与相同面积比钟型喷管的高度特性曲线.计算结果可为塞式喷管的设计研制提供参考.   相似文献   

8.
 采用2种不同对接分区网格技术讨论了不同的网格结构对绕偏副翼的三维机翼流动的Euler方程解的影响.一种是部分不连续的网格(PDG);另一种是完全连续的网格(CCG),分别在PDG和CCG中采用Van Leer的矢通量分裂格式和Jameson的中心差分格式求解了Euler方程.算例表明,2种网格各有其优缺点,且都能得到有用的结果,但为了高效地取得更好的计算结果,必须根据流动和几何外形选取恰当的计算网格.  相似文献   

9.
加热器喷管热-流耦合传热分析   总被引:3,自引:0,他引:3  
针对加热器喷管中复杂的气、固、液多相流动传热问题,建立了三维热流耦合换热计算模型,分别对燃气、冷却剂和喷管室壁建立不同的控制方程,将辐射热量作为源项加入到方程中,进行流动和传热的耦合计算.采用此方法对美国AEDC(Arnold Engineering Development Center)喷管的流动传热过程进行了计算,数值计算结果与试验结果吻合较好.在此基础上对某超燃冲压发动机试验台水冷式加热器喷管的换热问题进行了三维数值模拟,并定量分析了辐射换热对加热器喷管壁面温度分布的影响.结果表明:冷却水流量取2.0 kg/s时,加热器喷管气壁最高温度为660K,膜温度为430 K,加热器能可靠冷却,其热效率满足试验要求,对于含有H2O和CO2这样的高温燃气,辐射热量对喷管壁面温度分布有较大影响,必须引入到温度场的求解之中.  相似文献   

10.
三维多段机翼复杂流场的计算和分析   总被引:1,自引:0,他引:1  
采用中心差分的有限体积方法和分区技术求解了N-S(Navier-Stokes)方程,在分区求解技术中采用了满足通量守恒的内边界耦合条件.分析讨论了三维襟翼的绕流流场,对"剪刀差"处的三维分离进行了探讨,初步揭示了绕流的主要特征及对附近物面压强的影响.同时,分析了三维襟翼前缘的分离流动.   相似文献   

11.
垂直下降状态下的旋翼三维流场数值模拟   总被引:4,自引:0,他引:4  
应用激励盘模型,采用计算流体力学(CFD, Computational Fluid Dynamics)方法结合动量叶素理论,计算了旋翼在垂直下降时的流场特征与气动性能.计算过程中,旋翼载荷被描绘成沿桨盘径向分布、与当地流动参数相关的压力源项.在直角坐标系中,运用有限体积方法直接求解了定常不可压N-S(Navier-Stokes)方程,湍流模型为S-A(Spalart-Allmaras)一方程模型,重点使用诱导速度经验公式计算出了压力源项.旋翼流场模拟结果和性能预计结果同实验测量数据吻合较好,表明这种CFD方法可以有效地分析旋翼下降飞行时的空气流动特性,为进一步的涡环状态研究提供了参考.  相似文献   

12.
针对直升机飞行仿真应用,采用小扰动理论建立了桨叶叶素气动载荷计算方法。该计算方法集成了弹性桨叶挥舞-摆振-扭转模态,耦合了旋翼动态入流、非定常动态失速气动模型和旋翼配平模型。整个算法采用标准的状态空间格式。为验证算法,以UH-60A直升机为例,在低速和高速2种定常飞行情况下,研究了偏航流效应对旋翼气功性能的影响,结果表明高速飞行时偏航流效应对旋翼气功性能影响较大。模拟了桨盘平面诱导速度分布以及桨叶叶素气动载荷,将仿真结果与飞行试验结果进行对比验证,本文建立的方法可以准确地求解定常飞行时桨叶的非定常气动载荷,捕捉其沿方位角的变化特征,对于大速度前飞仍能适用。   相似文献   

13.
跨声风扇转子的BVF气动优化方法   总被引:1,自引:0,他引:1  
将加功量作为目标函数并结合边界涡量流BVF (Boundary Vorticity Flux)这 个诊断因子,对某高性能跨声风扇转子进行了优化.通过基于局部动力学的BVF诊断可以捕 捉到流场分离流动在叶片表面上的物理根源,可以清晰的显示出激波结构.尽管优化后加功 量增大,但因为BVF分布改善,激波结构和分离流动被良好地控制.三维粘性N-S(Navier-S tokes)程序计算结果表明,风扇转子在近峰值效率工况下压比提高了7.69%,效率提高了1.9 2%,在全工况范围转子性能都得到了较大提升.基于BVF诊断的优化手段在风扇/压气机的优 化中可起到很大的作用.   相似文献   

14.
  总被引:2,自引:1,他引:1  
共轴刚性双旋翼系统提高直升机最大前飞速度,但旋翼振动载荷明显增大。为研究高速共轴刚性双旋翼系统振动载荷特性,须首先分析共轴刚性双旋翼气动干扰下的非定常气动载荷。基于非定常面元法建立满足桨叶前缘和后缘边界条件的旋翼反流区气动模型以体现高速共轴刚性双旋翼后行边反流区影响,且增加共轴刚性双旋翼桨尖涡-桨叶气动干扰模型以体现共轴刚性双旋翼非定常气动干扰影响,并结合基于黏性涡粒子法的共轴刚性双旋翼尾迹模型,构建高速共轴刚性双旋翼气动干扰下的气动载荷分析方法。通过计算前飞状态下的X2共轴刚性双旋翼特征剖面非定常气动载荷时间历程,并与PRASADUM以及基于NASA OVERFLOW和CREATE AV Helios的CFD/CSD计算结果对比,验证本文共轴刚性双旋翼非定常气动载荷分析方法的有效性。相比于PRASADUM,本文分析更好地体现上、下旋翼在前行边和后行边非定常气动载荷的变化特性,并与CFD/CSD计算结果更吻合。分析X2上、下旋翼气动干扰对共轴刚性双旋翼桨叶非定常气动载荷的影响,以及单旋翼与共轴刚性双旋翼非定常气动载荷差异。分析表明,低速状态下的共轴刚性双旋翼非定常气动载荷受双旋翼桨尖涡干扰显著,而高速前飞状态受双旋翼桨叶干扰明显,且表现出桨叶片数整数倍的辐射状干扰特征。  相似文献   

15.
  总被引:2,自引:0,他引:2  
冲压空气涡轮(RAT)是飞机应急能源系统的能量提取部件,涡轮叶片设计和气动性能研究是实现风能高效利用的关键。针对某型飞机应急能源系统的功率需求,依据叶素-动量理论设计RAT叶片,采用计算流体力学(CFD)方法以多重旋转坐标系(MRF)模型模拟可变桨距RAT全三维混合流场,研究涡轮输出功率和风能利用系数随来流速度和飞行高度变化特性,分析涡轮叶片上流体压力和流速分布特点。结果表明:RAT输出功率和风能利用系数随来流速度和桨距角而变化,飞行包线内不同飞行高度下RAT具有不同的动力性能;通过调整桨距角可以实现RAT的恒功率输出;整个流场流动状况比较理想,但仍有改进空间。  相似文献   

16.
低雷诺数涡轮内部流场分析   总被引:8,自引:0,他引:8  
利用三维数值模拟手段研究涡轮内部流动.对比分析了不同飞行高度工作时涡轮内部流场结构的差异,以反映雷诺数的降低对流动结构和性能的影响.结果表明:在高空工作环境下,雷诺数下降近一个量级,负荷分布发生变化,叶片吸力面发生大范围分离,二次流以及径向掺混明显增强,由此导致涡轮性能恶化,效率急剧下降,这些因素在低雷诺数涡轮气动设计中需给予更多的关注.同时指出,负荷分布形式的选择对低雷诺数涡轮设计有重要意义.  相似文献   

17.
轴流压气机的气动稳定性模型,最初为一维模型,仅适用于描述喘振发作.对于旋转失速发作,在公开文献中有一些二维模型发表.本文提出了一类考虑压气机径向扰动对失速影响的新的气动稳定性模型.计算结果表明压气机的轴向扰动往往随着径向扰动的产生,径向扰动的强度影响压气机的气动稳定性,在叶尖还是叶根首先产生失速与压气机基元叶栅特性密切相关.本文对轴流压气机二维和三维气动稳定性模型的计算结果进行了对比分析.  相似文献   

18.
针对直升机配平问题,基于CFD/CSD松耦合策略建立了计入旋翼气弹效应的配平分析方法。旋翼桨叶CSD求解器与旋翼CFD求解器以桨叶弹性轴和变距轴线为媒介,通过线性插值方法交换气动载荷和响应数据。CFD模块和CSD模块在时域内推进,旋翼每旋转一圈交互一次数据,以CFD模块计算的气动力来修正配平计算中气弹分析的气动力输入,直到配平量和CFD气动力在迭代过程中不再变化,即得到耦合配平解。以SA349/2“小羚羊”直升机小速度前飞状态为算例,计算表明所提方法收敛迅速、稳定性良好,计算结果与飞行实测值的对比分析验证了方法的有效性,对桨叶气动力曲线及桨涡干扰等现象具有很好的捕捉能力。   相似文献   

19.
在平面透平叶栅风洞中,测量了一种典型透平静叶型直叶片叶栅和叶片弯曲角分别为-10°、-20°的反弯曲叶片叶栅的出口流场和叶片表面静压.定量地分析了叶片反弯曲对叶栅出口二次流、总压损失和气流角的影响,并探讨了叶片反弯曲作用的机理.结果表明:叶片反弯曲在叶片表面特别是吸力面建立了反"C"形压力分布,它是引起叶栅性能和流场变化的主要原因,但叶片反弯曲不能改善叶栅的气动性能.   相似文献   

20.
针对目前环量控制技术中射流参数与迎角对翼型气动特性的影响高度耦合,对应非定常气动力模型精度较差的研究现状,基于环量控制翼型强迫俯仰振动数值模拟数据,借助Kriging模型实现环量控制翼型的定常气动力插值,借助微分方程模型完成了适用于环量控制翼型的线性微分方程建模,采用两步线性回归参数辨识方法辨识线性微分方程模型中特征时间常数等参数,对高动量系数大振幅流动状态下的非线性影响进行修正。研究结果表明:基于Kriging模型实现的环量控制翼型定常气动力插值精度较传统气动导数模型高,建立的环量控制翼型非定常气动力模型能够精确预测不同流动状态下的气动力和力矩系数变化情况。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号