首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
超临界压力RP-3在竖直细圆管内混合对流研究   总被引:3,自引:0,他引:3  
研究了超临界压力下碳氢燃料航空煤油RP-3在竖直细圆管内混合对流,分析了浮升力及热物性对碳氢燃料在垂直管中对流换热的影响。实验中控制热流密度从200~500 kW/m2变化,进口压力变化范围为3~5 MPa,进口雷诺数从5 000~10 500范围内变化。研究表明:在向上流动情况中进口段存在较为明显的入口效应,换热出现恶化现象,而在向下流动中未出现;对于向上和向下流动,由于热物性的综合影响,换热系数沿流动方向增大;在较低进口雷诺数(Re=5 700)时,对于向下流动,随着浮升力影响的增大,浮升力改变了流体径向速度分布,出现了换热强化;在较高进口雷诺数(Re=10 500)时,浮升力对换热的影响依然显著;判别式Bo*数小于5.6×10-7未能预测浮升力对碳氢燃料换热影响。   相似文献   

2.
为了测定吸热碳氢燃料在不同温度条件下的总吸热量(热沉),以便于对吸热碳氢燃料进行筛选,研制了一套适合于高温下热沉测量的实验装置。该装置主要由进样计量、载气输送、加热控温、反应量热和产物分析五部分组成。对反应管轴向温度分布进行了测定,实验装置的工作温度范围在500℃-900℃,各温度下恒温区域长达440 mm,恒温区内温度梯度不大于3℃;利用电能标定的方法测定了装置的量热常数,并用纯物质(N2)作为样品对装置的准确度进行了校准,求解仪器量热常数的工作曲线的线性相关系数在0.999 7以上,氮气热沉测定值与理论值基本吻合,表明该装置测定结果可靠、测量准确度高,装置的设计符合T ian’s方程,可用于吸热碳氢燃料热沉的实验测定,为吸热碳氢燃料的研究提供了较可靠的热化学数据。  相似文献   

3.
TIMED/SABER与AURA/MLS临近空间探测温度数据比较   总被引:1,自引:1,他引:0       下载免费PDF全文
利用AURA/MLS数据(V4.2)和TIMED/SABER数据(V2.0)对20~92km高度的大气温度进行比较分析,计算AURA/MLS数据与TIMED/SABER数据的温度绝对偏差,并分析平均温度偏差在不同季节中随经度、纬度和高度的变化特征.结果表明:20~80km高度的平均温度偏差在±6K以内,相对偏差在3%以内;80~90km高度平均温度偏差减小至-10K以下,相对偏差在9%以内.中低纬度地区平均温度偏差廓线的变化趋势一致,从20km高度的-3K左右的负偏差逐渐增加,在45~50km高度的平流层顶处有较明显的3K左右的正偏差峰值.平均温度偏差随纬度变化明显,随经度变化很小.研究结果可为卫星数据的应用提供参考依据.   相似文献   

4.
受试验设备能力限制,地面风洞无法完全模拟高超声速飞行器临近空间热环境。文章采用在飞行器表面开孔安装长时耐高温热流传感器直接测量热流密度的方法,国内首次获得Ma12以上高超声速飞行器表面热流密度时变数据和边界层转捩特征。实测热流值与理论预示值规律相同,两者偏差小于20%。针对树脂基材料导热微分方程中虽考虑了热解吸热项,但未考虑导热系数随温度变化情况,采用在树脂基材料导热微分方程中加入物性参数随温度变化项的方法,计算了飞行器热防护结构内部分层温度和碳化层厚度,并与实测结果进行了比较,不考虑树脂热解特性和材料物性参数随温度变化,理论值高于实测值,最大偏差275~320℃;考虑热解特性和物性参数随温度变化情况,计算值与实测值最大偏差小于70℃。  相似文献   

5.
超燃燃烧室等离子体点火和火焰稳定性能   总被引:13,自引:3,他引:10  
为了研究热等离子点火器在超燃冲压发动机中的应用,在来流马赫数2.0工况下,针对乙烯和氢气两种燃料,进行了超燃环境中等离子体点火的试验和仿真研究.在来流总温1 500~1 950 K,燃料当量比0.1~0.55范围内对等离子点火器的点火和改善燃烧性能的性质进行了详细分析.结果显示:对于氢气和乙烯燃料,等离子体点火器使两种燃料的点火性能均得到明显改善,点火延迟时间大大缩短,燃料着火范围扩大、贫燃极限当量比降低.但未观察到其在加速掺混以及改善燃烧性能方面的明显作用.进行了与乙烯燃烧试验对应的数值仿真工作,选用了两种乙烯化学反应模型进行对比研究.仿真结果显示:8步9组分反应模型与试验结果符合较好,而3步6组分反应模型过高的估计了反应剧烈程度,燃烧室压力值偏高,压力起始上升位置偏向上游.所用的8步模型比3步模型更适合于超燃燃烧室中乙烯反应的模拟.  相似文献   

6.
航天器常用有效发射率表征多层的隔热性能,其经验值范围为0.02~0.04,经验值仅与多层单元数有关,不随温度变化。有效发射率经验值的适用条件是多层的热面温度约-10℃~50℃,多层的冷面不照太阳。使用条件偏离得越多,有效发射率的经验值导致的计算偏差就越大。针对该问题,提出采用辐射项加导热项的混合传热模型,取代传统的纯辐射模型,并给出了方程中导热项系数和辐射项系数的计算方法。以国产10单元多层为例,给出了方程系数的详细计算过程,该系数已用于工程实际。用多种工况验证了该方程的准确性,并阐述了纯辐射模型导致较大偏差的问题根源。采用混合传热模型使高温/低温区的计算偏差从20℃降低至5℃。混合传热模型比纯辐射模型更适于描述多层的传热过程。最后,研究了选取多层隔热性能热平衡试验工况的原则。  相似文献   

7.
亚临界压力下航空煤油RP-3动力黏度测量   总被引:3,自引:0,他引:3  
基于经典的毛细管测量流体黏度原理,提出一种新型的测量高温高压条件下的单相介质流体黏度的方法及实验设备.经过误差分析,该方法具有1.009%的测试误差.利用该方法对蒸馏水的动力黏度(2 MPa,295~400 K)进行了标定实验,实验结果表明动力黏度测量的平均偏差小于0.715%,其最大偏差不超过2.3%.然后对国产航空煤油RP-3在压力0.1~2 MPa下,温度为298~744 K下动力黏度进行了测量.该方法适用于均一的牛顿流体.   相似文献   

8.
通过静态膨胀法与固定流导法获得了(10~(-9)~10~(-14)) Pam~3/s的氦标准气体流量,并采用静态累积法对所产生的极小气体流量进行了测量,相应的氦离子流上升率在(10~(-10)~10~(-15)) A/s范围。实验结果表明:气体流量静态累积时的离子流波动随流量降低逐渐增大,降至1.69×10~(-14)Pam~3/s时,多个数据点已偏离上升率拟合线较远,此时达到测量下限。在(10~(-9)~7.66×10~(-12)) Pam~3/s范围,气体流量与对应离子流上升率有很好的线性,最大偏差为6.8%;当气体流量小于7.66×10~(-12)Pam~3/s时,标准流量与离子流上升率的对应关系呈现出明显的非线性。  相似文献   

9.
空间电推进系统的工质为Xe,其工作温度范围为-30~45 ℃,该范围覆盖Xe的临界点。在临界点附近,Xe可能呈现出多种形态,且对温度和压力变化十分敏感,采用传统状态方程在上述范围内计算其物理参数偏差最大可达30%。为解决这一问题,以CH4作为参考流体,建立了一种基于对比态原理的Xe物理特性计算方法。该方法能够对包括气相、液相、超临界区域的所有状态Xe物理性质进行准确计算。试验研究与国外数据对比的结果表明,在整个压力-温度范围内,计算误差小于0.5%。  相似文献   

10.
提出了基于三次样条曲线插值的温度补偿方法,用这种方法对测压范围为0.013 3×105~3.198 9×105 Pa,温度应用范围为-55~+80℃的高精度谐振筒压力传感器的实验标定结果进行了温度补偿.为加快标定过程,给出了传感器标定点数的减少方案.结果表明,在传感器的标定点数减少2/3的情况下,提出的温度补偿方法的综合误差为0.007 9%,约是基于径向基函数(RBF)神经网络的温度补偿方法的1/2,从而有效减少了传感器的标定成本和工作量.这对于解决高精度压力传感器的温度补偿问题具有一定的理论意义和工程应用价值.   相似文献   

11.
提高低导热材料表面温度均匀性方法的研究   总被引:1,自引:0,他引:1  
比较了不同低导热材料的高温热导率测试装置特点,确定了在整体加热方式下试样表面温度均匀性差是限制测试准确度提高的一个原因,提出采用分区加热的方法改善试样表面温度均匀性。选取三种不同热导率范围的材料作为被测试样,分别做了试样整体加热和分区加热的模拟计算。结果表明,整体加热方式只能在试样表面中心有限区域形成均温区,而分区加热方式能显著改善试样表面温度均匀性。  相似文献   

12.
月壤蓄热是月球原位资源利用的一种重要方式,也是解决未来月球基地能源需求的最具潜力的途径之一。针对月壤蓄热过程,建立了基于球形堆叠的月壤蓄热器多孔介质蓄热模型。蓄热器的壳体采用登月舱下降级的燃料罐,流体传热介质采用氦气。通过数值模拟的方法研究了不同流动压降下月壤蓄热球堆叠方式、球直径对蓄热器传热过程的影响规律和机理,并分析了蓄热动态过程。研究结果表明,月壤蓄热球在简单立方体均匀堆叠(SC)和面中心立方体均匀堆叠(FCC)两种方式下,SC堆叠方式的综合蓄热指数比FCC模式可提高302%;同时还发现月壤蓄热球的直径存在最优值,可使得蓄热器在单位泵功下获得最大的蓄热量,并且该最佳值随着流体进出口压差增加而减小。该研究可为未来月壤蓄热器的设计和优化提供理论指导。  相似文献   

13.
比对法真空计量标准装置是一种结构简单、操作方便、检定效率高、实用性强的二等真空标准装置。主要技术要求完全符合国际标准化组织(ISO)和国内有关真空标准的规定,尤其适用于真空计量二级站和一些基层单位大量常规校准,校准范围为10~5~10~(-4)Pa,总不确定度小于10%。在10~(-4)Pa范围内,压力的稳定度好于1%,在1~10~5Pa范围内,压力的稳定度好于0.5%。该标准装置的极限压力达10~(-6)pa。  相似文献   

14.
在柴油机喷油系统压力波的研究中,采用Wigner-Ville分布算法,对液-汽两相流条件下的柴油机喷油系统压力波的时频特性进行了分析,并与采用小波函数分析得到的结果进行了对比.研究结果表明,采用Wigner-Ville分布算法进行分析时,可以更好地显示出液-汽两相流条件下的柴油机喷油系统中压力波在时间和频率范围内的能量密度,能更清晰地反映出这种非稳态信号频率随时间变化的关系.当喷油系统存在长时间存活汽泡时,压力波的能量密度主要集中在主波上,除了低频率的能量外,还包着相当一部分较高频率的能量.而压力波次波则没有高频能量的出现.当喷油系统存在短时间存活汽泡时,其压力主波对应的频率较低,但能量密度比较大,而其压力次波具有一定量的高频率能量.   相似文献   

15.
飞机机电综合管理框架下燃油系统建模与仿真   总被引:1,自引:0,他引:1  
机电综合管理框架下,设计了基于Simulink的某型飞机燃油系统仿真平台,阐述了平台各系统的工作原理和实现方式,实现了飞机燃油系统的压力加油、发动机供油、交叉供油等功能,利用热时间常数计算法对飞机不同飞行阶段的燃油温度进行了模拟,采用建模方法对燃油泵的电气故障特性进行了分析.仿真结果表明:该燃油系统仿真平台有效地实现了实际燃油系统的所有功能特性,为飞机燃油系统机电综合管理的实施和优化提供了有利支撑,同时为飞机燃油系统的故障诊断与容错设计提供了仿真实验平台.  相似文献   

16.
气象因素对航空飞行意义重大。为了考察航空飞行的燃油效率,基于飞机性能数据库(BADA)模型,考虑气象因素,建立飞机燃油消耗的修正模型。以广州白云国际机场某进港航班为例,开展飞机进近飞行仿真试验,从燃油流量和燃油消耗量2个维度分别讨论气温、气压、风速变化对飞机燃油效率的影响。结果表明:气象因素与飞机燃油效率存在明显的相关性。当飞机飞行高度一定时,气温升高,燃油流量和燃油消耗量增大,燃油效率降低;气压增强,燃油流量无明显变化,燃油消耗量略有降低,燃油效率升高;风速增加,燃油流量和燃油消耗量先减小后增大,燃油效率先升后降,风速为4 m/s时燃油效率最高。当飞机飞行高度下降时,气温和气压升高,风速下降,燃油流量小幅度波动上升,燃油效率降低。最佳气象条件下,一次进近飞行能减少约3%的燃油消耗。研究结果对提高实际飞行的燃油效率有一定的参考意义。   相似文献   

17.
相变储能技术在航空航天等领域具有广泛的应用前景,但是相变材料导热性能差制约了其工程化应用。高导热的纳米材料能够有效提高相变材料的导热性能。为了对其相变现象进行更精细的模拟分析,基于Maxwell-Garnett等效介质理论(EMT)建立3种具有代表性结构的纳米复合相变材料详细物性参数,将流体体积(VOF)模型与焓-多孔介质模型相耦合,在考虑相变材料体积膨胀的情况下,数值模拟了纯石蜡、添加不同体积组分金刚石纳米粒子(ND)、单壁碳纳米管(SWCNT)和石墨烯纳米片(GnP)的纳米复合相变材料在定温边界条件下的固液相变过程。结果表明:相变材料熔化过程中对流效应主要分布在临近固液相界面、临近加热壁面及临近气液两相交界面这3个区域;3种纳米粒子中GnP的导热强化效果最佳,相比纯石蜡,添加体积分数为3%的GnP纳米复合相变材料固相导热系数提高了486%,相变材料的熔化时间缩短了69%;升高壁面温度能够有效缩短复合相变材料的熔化时间。   相似文献   

18.
一种自冷却结构燃油泵滑动轴承润滑特性分析   总被引:3,自引:1,他引:2  
为研究低介质黏度和自冷却结构限制下的航空燃油泵滑动轴承润滑特性分布规律,基于油膜动压润滑流动的Reynolds方程和等效黏度润滑流动模型,以绝热流动为假设简化滑动轴承内部流动的能量积分方程,构建一种联合Reynolds方程和绝热流动能量积分方程的燃油泵滑动轴承热流动润滑流动模型。采用CFD数值模拟和有限差分法相结合的混合仿真方法,分别对不同的间隙比、偏心率、宽径比条件下的滑动轴承的油膜压力、油膜厚度、油膜温度、端泄漏量、摩擦阻力等润滑特性进行了仿真分析。仿真结果表明:采用CFD计算滑动轴承径向载荷精度优于4.0%;保持偏心率不变,油膜承载力随着间隙比的增加而单调下降,油膜厚度随着间隙比的增高而增加;保持间隙比不变,油膜的承载力随着偏心率的增大也逐渐增大,油膜厚度随着偏心率的增高而下降,而油膜温度与油膜厚度成反比,且随着偏心率的升高,油膜温度的峰值越来越明显;当偏心率、间隙比一定时,可通过增加宽径比提高滑动轴承的油膜承载力。因此在滑动轴承的设计中,需综合考虑油膜承载力、端泄漏量、油膜厚度和温升间的相互制约因素,合理地优化间隙比、宽径比和偏心率以提高滑动轴承润滑性能。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号