首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
    
采用水热合成的方法,以硫脲(NH2CSNH2)为硫源和还原剂,合成出了二硫化钼/石墨烯(Mo S2/Graphene)复合电催化剂用于电解水制氢.将其旋涂到掺杂氟的Sn O2透明导电玻璃(FTO)上制备成Mo S2/Graphene薄膜进行电催化分解水制氢性能测试.研究发现,Mo S2/Graphene的催化活性较纯纳米Mo S2提高了近一倍.这是由于通过化学耦合作用选择性生长在石墨烯上的层状Mo S2其边缘拥有丰富的活性位点,同时石墨烯作为良好的导电基体也能大大加快了电子的转移速度.在0.5 mol/L H2SO4溶液中,Mo S2/Graphene旋涂到FTO上的层数为12层时,其电催化制氢效率最高:起峰电位提前到0.085 V,在0.2 V的过电位下电流密度达到了-4.5 m A/cm2.层状Mo S2/Graphene电催化剂作为Pt族贵金属的替代品,具有广阔的应用前景.  相似文献   

2.
Ionizing radiation (IR) exposure is inevitable in our modern society and can lead to a variety of deleterious effects including cancer and birth defects. A reliable, reproducible and sensitive assessment of exposure to IR and the individual response to that exposure would provide much needed information for the optimal treatment of each donor examined. We have developed a diagnostic test for IR exposure based on detection of the phosphorylated form of variant histone H2AX (γ-H2AX), which occurs specifically at sites of DNA double-strand breaks (DSBs). The cell responds to a nascent DSB through the phosphorylation of thousands of H2AX molecules flanking the damaged site. This highly amplified response can be visualized as a γ-H2AX focus in the chromatin that can be detected in situ with the appropriate antibody. Here we assess the usability of γ-H2AX focus formation as a possible biodosimeter for human exposure to IR using peripheral blood lymphocytes irradiated ex vivo and three-dimensional artificial models of human skin biopsies. In both systems, the tissues were exposed to 0.2–5 Gy, doses of IR that might be realistically encountered in various scenarios such as cancer radiotherapies or accidental exposure to radiation. Since the γ-H2AX response is maximal 30 min after exposure and declines over a period of hours as the cells repair the damage, we examined the time limitations of the useful detectability of γ-H2AX foci. We report that a linear response proportional to the initial radiation dose was obtained 48 and 24 h after exposure in blood samples and skin cells respectively. Thus, detection of γ-H2AX formation to monitor DNA damage in minimally invasive blood and skin tests could be useful tools to determine radiation dose exposure and analyze its effects on humans.  相似文献   

3.
Liquid human wastes and household water used for nutrition of wheat made possible to realize 24% closure for the mineral exchange in an experiment with a 2-component version of "Bios-3" life support system (LSS) Input-output balances of revealed, that elements (primarily trace elements) within the system. The structural materials (steel, titanium), expanded clay aggregate, and catalytic furnace catalysts. By the end of experiment, the permanent nutrient solution, plants, and the human diet gradually built up Ni, Cr, Al, Fe, V, Zn, Cu, and Mo. Thorough selection and pretreatment of materials can substantially reduce this accumulation. To enhance closure of the mineral exchange involves processing of human-metabolic wastes and inedible biomes inside LSS. An efficient method to oxidize wastes by hydrogen peroxide icon a quartz reactor at the temperature of 80 degrees C controlled electromagnetic field is proposed.  相似文献   

4.
ISAS's (Institute of Space and Astronautical Science) project for the exploration of comet Halley consists of two spacecraft, Sakigake and Suisei, launched on 7 January 1985 and 18 August, respectively.

Sakigake passed the sunward side of the comet on 11 March 1986 with a miss distance of 6.99 million km. Three experiments, a plasma wave probe with dipole and search-coil antennae, a magnetometer with three axis ring core sensor on an extended boom and a four-grid Faraday cup attached to the inner side of the wall of the spacecraft, detected various phenomena caused by the comet at a distance as far as 7 million km.

The other spacecraft, Suisei, flew by the comet on its sunward side with a miss distance of 151 thousand km on 8 March 1986. It carried two experiments, an ultraviolet imager and an energy analyzer for ions. The UV imager was able to take the first image of the hydrogen cloud of comet Halley on 26 November 1985. With this experiment, the spin period of the cometary nucleus, location of jets, amount of water evaporation, distribution of hydrogen density inside cloud, etc. were clarified. The energy analyser experiment provided information on the intensive interaction between cometary and solar wind ions.  相似文献   


5.
This paper presents improvements of a method (Stum et al., 2011) aimed at computing the water vapor path delay correction of altimeter sea surface height, using total precipitable water measurements from scanning microwave radiometers. The main interest of this improved method is for the Cryosat-2 mission over the ocean. Focus is made on the applicability of the method in near real time. An experiment to produce an operational path delay correction for Jason-2 and Cryosat-2 Interim Geophysical Data Records (IGDR) has been set up. Results confirm that the new correction, although less accurate than the one attainable with an embarked radiometer, improves the Cryosat-2 sea surface height accuracy.  相似文献   

6.
An ultraviolet imaging spectrometer (UVS) has been developed for the PLANET-B spacecraft. The UVS instrument is composed of a grating spectrometer (UVS-G) and a D/H absorption cell photometer (UVS-P). The UVS-G is a flat-field type spectrometer measuring optical emissions in the FUV and MUV range between 115 nm and 310 nm with a spectral resolution of 2 – 3 nm. The UVS-P is a photometer detecting hydrogen (H) and deuterium (D) Lyman α emissions separately by an absorption cell technique. Scientific targets of the UVS experiment are the investigation of (1) hydrogen and oxygen coronas around Mars, (2) the D/H ratio in the upper atmosphere, (3) dayglow, (4) aurora and nightglow, (5) dust, clouds and ozone, and (6) the surface composition of Phobos and Deimos.  相似文献   

7.
Very low frequency interferometry among two astronomical experiments has been proposed and accepted for further study for the second phase of China’s lunar exploration programme (the Chang’E Programme), which is envisaged to operate a lander and a rover on the surface of the moon. This experiment is an interferometer experiment in the very low frequency (VLF, f < 15 MHz) regime of radio frequencies with at least degree-level angular resolution. The goals include observing solar storm activities, Coronal Mass Ejections, Auroral Kilometric Radiation, and planetary radiation in the solar system, studying the origin of Cosmic Rays, spectral properties of pulsars, surveying ionized hydrogen in the Galaxy, and exploring coherent radio emissions.  相似文献   

8.
As part of the ESA-funded MELiSSA program, the suitability, the growth and the development of four bread wheat cultivars were investigated in hydroponic culture with the aim to incorporate such a cultivation system in an Environmental Control and Life Support System (ECLSS). Wheat plants can fulfill three major functions in space: (a) fixation of CO2 and production of O2, (b) production of grains for human nutrition and (c) production of cleaned water after condensation of the water vapor released from the plants by transpiration. Four spring wheat cultivars (Aletsch, Fiorina, Greina and CH Rubli) were grown hydroponically and compared with respect to growth and grain maturation properties. The height of the plants, the culture duration from germination to harvest, the quantity of water used, the number of fertile and non-fertile tillers as well as the quantity and quality of the grains harvested were considered. Mature grains could be harvested after around 160 days depending on the varieties. It became evident that the nutrient supply is crucial in this context and strongly affects leaf senescence and grain maturation. After a first experiment, the culture conditions were improved for the second experiment (stepwise decrease of EC after flowering, pH adjusted twice a week, less plants per m2) leading to a more favorable harvest (higher grain yield and harvest index). Considerably less green tillers without mature grains were present at harvest time in experiment 2 than in experiment 1. The harvest index for dry matter (including roots) ranged from 0.13 to 0.35 in experiment 1 and from 0.23 to 0.41 in experiment 2 with modified culture conditions. The thousand-grain weight for the four varieties ranged from 30.4 to 36.7 g in experiment 1 and from 33.2 to 39.1 g in experiment 2, while market samples were in the range of 39.4–46.9 g. Calcium levels in grains of the hydroponically grown wheat were similar to those from field-grown wheat, while potassium, magnesium, phosphorus, iron, zinc, copper, manganese and nickel levels tended to be higher in the grains of experimental plants. It remains a challenge for future experiments to further adapt the nutrient supply in order to improve senescence of vegetative plant parts, harvest index and the composition of bread wheat grains.  相似文献   

9.
The measurements of positive ion composition in the high latitude D-region have revealed an excess of 34+ under distrubed conditions which has been interpreted as H2O2+. At the same altitude range near the transition height oxonium ions were measured as well. This paper presents a new model for the production and loss of oxonium ions with their production from H2O2+ + H2O → H3O+ + HO2 and their loss by attachment of N2 and/or CO2. A reaction constant of 8.5×10?28 (300/T)4 cm6s?1 has been obtained for the three body attachment H3O+ + CO2 + M → H3O+.CO2 + M from the measured density profile of 63+ in flight 18.1020. Mesospheric H2O and H2O2 densities are inferred from measurements of four high latitude ion compositions based on the oxonium model. The mixing ratios of hydrogen peroxide are up to two orders of magnitude higher compared to previous model calculations. In order to explain the missing production of odd hydrogen, we consider larger O(1D) densities, surface reactions of O(3P) on particles, and cathalytic photodissociation of water vapor on aerosol particles.  相似文献   

10.
The main molecular processes to produce the hydrogen comae of comets are now well known: Water, the main constituent of cometary atmospheres, is photodissociated by the solar ultraviolet radiation to form the high (20 km s−1) and low (8 km s−1) velocity components of the atomic hydrogen. The hydrogen clouds of various fresh comets have been observed in 1216Å by a number of spacecrafts. Ultraviolet observations of short period comets are, however, rather rare. Consequently Comet P/Halley in this apparition is a good object to obtain new physics of the hydrogen coma. Strong breathing of the hydrogen coma of this comet found by “Suisei” provides just such an example. The rotational period of Comet Halley's nucleus, its activity in the form of outbursts alone, and the position of jet sources etc. are determined from the breathing phenomena. Atomic hydrogen from organic compounds with a velocity of 11 km s−1 play an important role in that analysis. The time variations of the water production rate of Comet Halley during this apparition observed by various spacecrafts appear to be in agreement with each other and are about 1.5–2 times larger than the standard model. The difficulty of the calibration problem was emphasized.  相似文献   

11.
对锐钛矿相TiO2的第一原理计算   总被引:2,自引:0,他引:2  
用TiO2作为阳极的光电化学电池的工作以来,对TiO2的光催化机理的研究已发展成为一个热门研究领域.从第一原理计算的角度,用基于密度泛函理论的全电势线性缀加平面波法,对锐钛矿相TiO2的晶格结构和电子结构作了比较系统的计算.通过使总能量和原子受力达到最低,得到晶格的优化结构,结果与实验符合得很好.由晶格优化结构得到电子结构,包括能带结构、X射线吸收谱等.其中能带结构间接跃迁能隙为2.12?eV,价带的较高态宽度与X射线衍射谱(XPS)实验值完全一致.  相似文献   

12.
An initial experiment in the Laboratory Biosphere facility, Santa Fe, New Mexico, was conducted May-August 2002 using a soil-based system with light levels (at 12 h per day) of 58-mol m-2 d-1. The crop tested was soybean, cultivar Hoyt, which produced an aboveground biomass of 2510 grams. Dynamics of a number of trace gases showed that methane, nitrous oxide, carbon monoxide, and hydrogen gas had initial increases that were substantially reduced in concentration by the end of the experiment. Methane was reduced from 209 ppm to 11 ppm, and nitrous oxide from 5 ppm to 1.4 ppm in the last 40 days of the closure experiment. Ethylene was at elevated levels compared to ambient during the flowering/fruiting phase of the crop. Soil respiration from the 5.37 m2 (1.46 m3) soil component was estimated at 23.4 ppm h-1 or 1.28 g CO2 h-1 or 5.7 g CO2 m-2 d-1. Phytorespiration peaked near the time of fruiting at about 160 ppm h-1. At the height of plant growth, photosynthesis CO2 draw down was as high as 3950 ppm d-1, and averaged 265 ppm h-1 (whole day averages) during lighted hours with a range of 156-390 ppm h-1. During this period, the chamber required injections of CO2 to continue plant growth. Oxygen levels rose along with the injections of carbon dioxide. Upon several occasions, CO2 was allowed to be drawn down to severely limiting levels, bottoming at around 150 ppm. A strong positive correlation (about 0.05 ppm h-1 ppm-1 with r2 about 0.9 for the range 1000-5000 ppm) was observed between atmospheric CO2 concentration and the rate of fixation up to concentrations of around 8800 ppm CO2.  相似文献   

13.
Soybean and potato plants were grown in controlled environments at carbon dioxide (CO2) partial pressures ranging from 0.05 to 1.00 kPa. The highest yields of edible biomass occurred at 0.10 kPa for both species, with higher CO2 levels being supraoptimal, but not injurious to the plants. Stomatal conductance rates of upper canopy leaves were lowest at 0.10 kPa CO2, while conductance rates at 0.50 and 1.00 kPa were significantly greater than 0.10 kPa. Total water use by the plants was greatest at the highest CO2 pressures (i.e. 0.50 and 1.00 kPa); consequently, water use efficiencies (biomass produced/water used) were low at the highest CO2 pressures. Based on previous CO2 studies in the literature, the increased conductance and water use at the highest CO2 pressures were surprising and pose interesting challenges for managing plants in a CELSS, where CO2 pressures may exceed optimal levels.  相似文献   

14.
A scanning infrared radiometer used to measure nitric acid was flown on the STRATOPROBE Flight of November 8, 1978. Using the observed thermal emission from 6.5 to 7.4 microns during the balloon ascent, a water vapour profile has been derived using a band model of the water vapour lines in this spectral region. The resulting profile has a minimum of 3.3 ppmv at the tropopause and then rises to a value of 5 ppmv by 30 km. The profile is comparable to the profile from another water vapour instrument from the National Physical Laboratory which was flown on the LIP balloon payload on the same day. A coincident profile from the LIMS experiment on NIMBUS 7 was also obtained since the STRATOPROBE experiment was flown as a correlative measurement for the LIMS experiment.  相似文献   

15.
The fragmenting of high energy, heavy ions (HZE particles) by hydrogen targets is an important, physical process in several areas of space radiation research. In this work quantum mechanical optical model methods for estimating cross sections for HZE particle fragmentation by hydrogen targets are presented. The cross sections are calculated using a modified abrasion-ablation collision formalism adapted from a nucleus-nucleus collision model. Elemental and isotopic production cross sections are estimated and compared with report measurements for the breakup of neon, sulphur, and iron, nuclei at incident energies between 400 and 910 MeV/nucleon. Good agreement between theory and experiment is obtained.  相似文献   

16.
高温质子交换膜燃料电池(HT-PEMFC)由于较高的工作温度(130~220℃),具有较快的电极反应动力学、较强的抗燃料/空气中杂质毒化能力、广泛的燃料来源(甲醇重整气、工业副产氢等)及简单的水/热管理系统等优点。因此,HT-PEMFC将成为聚合物膜燃料电池的重要前沿发展方向之一。重点介绍了北京航空航天大学团队近十年来在HT-PEMFC关键材料-高温膜、催化层和膜电极等方面的研究进展,针对磷酸(PA)掺杂型高温膜的质子传导率和机械性能之间的最佳平衡点、催化层中PA分布和迁移对电池性能的影响机制,以及大尺寸膜电极一致性对电堆性能影响与衰减机制等科学问题,从聚电解质膜材料的分子设计、有序催化层结构调控和大尺寸膜电极电堆优化等工作进行了梳理,对HT-PEMFC技术所面临的技术挑战问题与未来发展趋势做出了评述和展望。   相似文献   

17.
Materials Experiment on Tiangong-2 Space Laboratory   总被引:1,自引:1,他引:0       下载免费PDF全文
During the China's Tiangong-2 (TG-2) flight mission, the experiments of 18 kinds of material samples were conducted in space by using a Multiple Materials Processing Furnace (MMPF) mounted in the orbital module of the TG-2 space laboratory. After the experiments of 12 kinds of samples of the first and second batches were completed successfully, astronauts packed and brought them back to the ground by ShenzhouⅡ spacecraft. By studying processing and formation on semiconductor and optoelectronics materials, metal alloys and metastable materials, functional single-crystal, micro-and nano-composite materials encapsulated in sample ampoules both in space and on Earth, we expect to explore some physical and chemical processes and mechanism of the materials formation that are normally obscured and therefore are difficult to study quantitatively on the ground due to the gravity-induced convection, to obtain the processing and synthesis technology for preparing high quality materials, and lead to the improvement and development of materials processing techniques on Earth, and also develop the experiment device and comprehensive ability for materials experiment in microgravity environment. This report briefly introduces the main points of each research work and preliminary comparative analysis results of 12 samples carried out by scientists undertaking research task.   相似文献   

18.
This experiment was conducted as part of a risk mitigation payload aboard the Space Shuttle Atlantis on STS-101. The objectives were to test a newly developed water delivery system, and to determine the optimal combination of water volume and substrate for the imbibition and germination of flax (Linum usitatissimum) seeds in space. Two different combinations of germination paper were tested for their ability to absorb, distribute, and retain water in microgravity. A single layer of thick germination paper was compared with one layer of thin germination paper under a layer of thick paper. Paper strips were cut to fit snugly into seed cassettes, and seeds were glued to them with the micropyle ends pointing outward. Water was delivered in small increments that traveled through the paper via capillary action. Three water delivery volumes were tested, with the largest (480 microliters) outperforming the 400 microliters and 320 microliters volumes for percent germination (90.6%) and root growth (mean=4.1 mm) during the 34-hour spaceflight experiment. The ground control experiment yielded similar results, but with lower rates of germination (84.4%) and shorter root lengths (mean=2.8 mm). It is not clear if the roots emerged more quickly in microgravity and/or grew faster than the ground controls. The single layer of thick germination paper generally exhibited better overall growth than the two layered option. Significant seed position effects were observed in both the flight and ground control experiments. Overall, the design of the water delivery system, seed cassettes and the germination paper strip concept was validated as an effective method for promoting seed germination and root growth under microgravity conditions.  相似文献   

19.
20.
The Spacelab-Mir-1 (SLM-1) mission is the first docking of the Space Shuttle Atlantis (STS-71) with the Orbital Station Mir in June 1995. The SLM-1 "Greenhouse-2" experiment will utilize the Russian-Bulgarian-developed plant growth unit (Svet). "Greenhouse-2" will include two plantings (1) designed to test the capability of Svet to grow a crop of Superdwarf wheat from seed to seed, and (2) to provide green plant material for post-flight analysis. Protocols, procedures, and equipment for the experiment have been developed by the US-Russian science team. "Greenhouse-2" will also provide the first orbital test of a new Svet Instrumentation System (SIS) developed by Utah State University to provide near real time data on plant environmental parameters and gas-exchange rates. SIS supplements the Svet control and monitoring system with additional sensors for substrate moisture, air temperature, IR leaf temperature, light, oxygen, pressure, humidity, and carbon-dioxide. SIS provides the capability to monitor canopy transpiration and net assimilation of the plants growing in each vegetation unit (root zone) by enclosing the canopy in separate, retractable, ventilated leaf chambers. Six times during the seed-to-seed experiment, plant samples will be collected, leaf area measured, and plant parts fixed and/or dried for ground analysis. A second planting initiated 30 days before the arrival of a U.S. Shuttle [originally planned to be STS-71] is designed to provide green material at the vegetative development stage for ground analysis. [As this paper is being edited, the experiment has been delayed until after the arrival of STS-71.]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号