首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
通过对大鼠尾吊模型进行改进,研制出一种新型可调节体位的大鼠后肢去负荷悬吊装置,研究模拟微重力效应下体液分布变化对大鼠骨代谢的影响.将36只SD大鼠均分为对照组(CON)、头低位后肢去负荷组(HDT)、水平位后肢去负荷组(HH)和头高位后肢去负荷组(HUT)4组,实验21天后,利用DXA检测大鼠的骨密度(BMD).模拟微重力效应下的三组大鼠后肢均发生严重骨丢失,其中HH和HUT组后肢BMD显著大于HDT组.实验结果表明,体液分布变化可能在模拟微重力效应导致的骨丢失中起到重要作用,新型大鼠后肢去负荷悬吊装置能够调节大鼠体位(体液)进行模拟微重力效应研究.   相似文献   

2.
为研究长期禁食过程中大鼠尿酸代谢的变化及其潜在的调控机制,以Sprague-Dawley(SD)大鼠为动物模型,通过病理组织切片、生化检测、荧光定量PCR(qRT-PCR)以及蛋白免疫印迹(Western blotting)等方法分析不同禁食时间(1,2,3,5,7天)大鼠尿酸水平及其代谢相关基因和蛋白的表达变化。结果表明,长期禁食未对大鼠肾脏组织产生明显的损伤,引起了血尿酸水平上升、尿尿酸水平波动性变化和血液尿酸酶活性升高;随着禁食时间的延长,主要尿酸转运蛋白的mRNA和蛋白表达水平逐渐上调。长期禁食过程中大鼠尿酸代谢变化可能与尿酸转运蛋白及尿酸酶活性有关。  相似文献   

3.
模拟失重兔脑波超慢涨落图的研究   总被引:4,自引:0,他引:4  
兔在头低位悬吊的15天中,脑电的超慢涨落发生明显的改变,表现为16谱段、S_1~S_8谱结构、S 谱谐振及功率比的变化,这些变化反映了悬吊对脑功能的影响。结果表明脑电超慢涨落技术可应用到航天脑功能的研究中去。  相似文献   

4.
交叉航路航空器碰撞风险评估   总被引:1,自引:0,他引:1  
在与经典的Reich模型进行比较后,对一种基于事件的交叉航路航空器碰撞风险模型进行了改进,补充考虑了处于平飞阶段的航空器因在垂直方向上相对运动而导致的碰撞风险.分析了其水平碰撞概率较Reich模型所得结果保守的原因,采用蒙特卡洛仿真的方法产生了两架航空器之间的相对位置误差数据,针对多个概率分布模型进行了拟合,比较了不同概率分布模型对航空器碰撞风险的影响.结果表明:代表严重误差的尾部数据直接决定了航空器碰撞风险,但因为其数据较少,所以除广义帕累托分布外,其他分布都不能很好地对尾部数据进行拟合.  相似文献   

5.
偶极倾角对弓激波日下点距离和尾部张角的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
通过对IMP 8,Geotail,Magion 4和Cluster 1四颗卫星弓激波穿越数据的统计及拟合分析,定量研究了偶极倾角对弓激波日下点距离和尾部张角的影响.结果表明:弓激波日下点距离随偶极倾角绝对值的增大而增大,且偶极倾角为负值时比其为正值时日下点距离增大的幅度更大;弓激波尾部张角随偶极倾角绝对值增大而减小;当偶极倾角由负变为正的时候,弓激波向地球一侧移动,同时尾部张角增大.研究结果为进一步建立包含偶极倾角效应的弓激波模型奠定了基础.   相似文献   

6.
轿车的气动阻力对轿车的燃油经济性有着重要影响.对于折背式轿车,由尾部产生的气动阻力可占整个外形气动阻力的50%.因此,弄清折背式轿车的尾流结构对开发具有良好气动特性的新型轿车有重要意义.利用风洞试验和CFD(Computational Fluid Dynamics)技术相结合,分析了折背式轿车的尾流结构及尾部形状对尾流结构的影响,为设计具有良好气动特性的折背式轿车提供了依据.  相似文献   

7.
中药在改善模拟失重兔主要脏器形态学变化中的作用   总被引:1,自引:0,他引:1  
通过实验探讨中药作为一种新的防护措施的可能性。实验动物为53只白兔, 用头低位悬吊方法模拟失重, 时间7天。实验前将兔分为四组:对照组, 悬吊组, 川芎组, 丹黄组, 实验中分别喂水或喂中药。实验后取脑、心、肺、肾、腹主动脉、比目鱼肌等6个脏器制片, 进行组织学观察。结果是两种中药均有改善模拟失重兔主要脏器血循环和组织结构的作用, 丹黄合剂的作用优于川芎。这说明中药作为一种新的防护措施是有希望的。   相似文献   

8.
为研究临近空间表面波等离子体减阻效果,基于流体宏观模型的基本特征,分析了表面波等离子体流动控制机理的基础,以飞艇为模型,对其在 0°攻角情况下的流场进行仿真计算,比较了不同激励器控制方案的减阻效果,研究了飞艇尾部区域的等离子体流动控制效果. 结果表明,表面波等离子体具有增加飞艇升力、减小飞艇阻力的效果;单侧控制方案最大减阻效果达7%左右,对称控制方案减阻效果明显优于单侧控制方案,最大减阻效果可达32%左右;表面波等离子体对飞艇尾部的流动分离具有很好的消除抑制作用.   相似文献   

9.
本研究结果表明,大鼠在声级为85dB(A)噪声环境下悬吊(HDT-30°)10昼夜后,淋巴细胞转化率及白细胞介素2(IL2)明显降低,血浆皮质酮含量显著升高,下丘脑内多巴胺(DA)和去甲肾上腺素(NA)含量呈升高趋势,表明机体处于应激状态.单纯85dB(A)噪声组除多巴胺及T淋巴细胞增殖反应外上述指标也有同样的变化规律,但没有复台因素组明显.本文出现的神经-内分泌-免疫系统功能失调可能是航天员易患感染性疾病的原因之一.  相似文献   

10.
为了在地表环境下对多节双八面体变几何桁架空间机械臂进行空间环境模拟研究,需要把机械臂悬吊起来进行重力补偿.根据机械臂的正向运动学和张力吊挂原理,设计了悬吊系统二自由度控制器.该控制器其中一个自由度由机械臂的正向运动学得出前馈控制信号,另一个自由度根据张力的偏移信号,采用PI控制得出反馈控制信号,结合两个自由度的信号对吊索长度进行收放控制,从而使吊索保持恒定张力.实验表明,该控制器能快速、稳定、可靠地控制机械臂吊索张力,既能补偿前馈控制无法消除的结构误差,又能解决反馈控制响应过慢的问题,控制性能远远优于单自由度控制  相似文献   

11.
Weightlessness acts on human breast cancer cell line MCF-7.   总被引:6,自引:0,他引:6  
Because cells are sensitive to mechanical forces, weightlessness might act on stress-dependent cell changes. Human breast cancer cells MCF-7, flown in space in a Photon capsule, were fixed after 1.5, 22 and 48 h in orbit. Cells subjected to weightlessness were compared to 1 g in-flight and ground controls. Post-flight, fluorescent labeling was performed to visualize cell proliferation (Ki-67), three cytoskeleton components and chromatin structure. Confocal microscopy and image analysis were used to quantify cycling cells and mitosis, modifications of the cytokeratin network and chromatin structure. Several main phenomena were observed in weightlessness: The perinuclear cytokeratin network and chromatin structure were looser; More cells were cycling and mitosis was prolonged. Finally, cell proliferation was reduced as a consequence of a cell-cycle blockade; Microtubules were altered in many cells. The results reported in the first point are in agreement with basic predictions of cellular tensegrity. The prolongation of mitosis can be explained by an alteration of microtubules. We discuss here the different mechanisms involved in weightlessness alteration of microtubules: i) alteration of their self-organization by reaction-diffusion processes, and a mathematical model is proposed, ii) activation or deactivation of microtubules stabilizing proteins, acting on both microtubule and microfilament networks in cell cortex.  相似文献   

12.
This study employed a rat tail-suspension model to investigate the effects of simulated weightlessness on the intestinal mucosal barrier. Twenty-four Wistar rats were randomly divided into control (CON), 14-day tail-suspension (SUS-14d), and 21-day tail-suspension (SUS-21d) groups (n = 8 per group). Expression of occludin and zonula occludins-1 (ZO-1), proteins of the tight junction (TJ), in the intestinal mucosa was measured by immunohistochemical analysis, Western blotting, and mRNA fluorescent quantitation PCR. Plasma concentrations of diamine oxidase (DAO) and d-lactate were determined using an enzymatic spectrophotometric assay. Expression of occludin and ZO-1 was reduced in the SUS-14d and SUS-21d groups as compared to the CON group, with lowest expression observed in the SUS-21d group (P < 0.01). Examination by transmission electron microscopy (TEM) of the jejunal epithelium revealed increased intercellular space, decreased TJ and desmosome densities, and destruction of microvilli in the SUS-14d and SUS-21d groups. Plasma DAO and d-lactate concentrations in the SUS-21d group were higher than those in SUS-14d group and significantly higher than those in the CON group (P < 0.01). In all three groups, the expression of occludin and ZO-1 was found to correlate negatively with DAO (P < 0.01) and d-lactate (P < 0.01) concentrations. It is concluded that simulated weightless results in down-regulation of expression of TJ proteins in the rat intestinal mucosa. Simulated weightlessness is proposed to increase intestinal permeability through damage to the TJ.  相似文献   

13.
Some contractile and electrophysiological properties of muscle fibers isolated from the slow-twitch soleus (SOL) and fast-twitch extensor digitorum longus (EDL) muscles of rats were compared with those measured in SOL muscles from suspended rats. In suspended SOL (21 days of tail-suspension) membrane potential (Em), intracellular sodium activity (aiNa) and the slope of the relationship between Em and log [K]o were typical of fast-twitch muscles. The relation between the maximal amplitude of K-contractures vs Em was steeper for control SOL than for EDL and suspended SOL muscles. After suspension, in SOL muscles the contractile threshold and the inactivation curves for K-contractures were shifted to more positive Em. Repriming of K-contractures was unaffected by suspension. The exposure of isolated fibers to perchlorate (ClO4-)-containing (6-40 mM) solutions resulted in a similar concentration-dependent shift to more negative Em of activation curves for EDL and suspended SOL muscles. On exposure to a Na-free TEA solution, SOL from control and suspended rats, in contrast to EDL muscles, generated slow contractile responses. Suspended SOL showed a reduced sensitivity to the contracture-producing effect of caffeine compared to control muscles. These results suggested that the modifications observed due to suspension could be encounted by changes in the characteristics of muscle fibers from slow to fast-twitch type.  相似文献   

14.
The "slow" antigravity muscle adductor longus was studied in rats after 14 days of spaceflight (SF). The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light and electron microscopy revealed myofiber atrophy, segmental necrosis and regenerative myofibers. Regenerative myofibers were N-CAM immunoreactive (N-CAM-IR). The neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles, degenerative changes, vacant axonal spaces and changes suggestive of axonal sprouting. No alterations of muscle spindles was seen either by light or electron microscopy. These observations suggest that muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight. In a separate study, GABA immunoreactivity (GABA-IR) was evaluated at the level of the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension ("simulated" microgravity). A reduction in number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-IR terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system after spaceflight and hindlimb suspension it is suggested that after limb unloading there are alterations of afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the changes observed in GABA immunoreactivity of cells and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.  相似文献   

15.
失重是特定空间运动条件下的重要环境物理特征之一, 一般以微重力环境来表示. 几十年来人类利用空间失重环境进行了多学科领域的科学研究与探索. 由于真实空间失重环境下科学实验机会稀少, 人类为研究空间失重环境或效应, 开发了多种地基的空间模拟实验技术方法. 然而, 对于空间生物学和空间生物技术研究而言, 已有的各种模拟实验技术手段在原理上和应用上均存在一定的局限性. 本文介绍了抗磁性物质在大梯度强磁场中的悬浮现象, 及将其用于模拟空间失重环境的方法与原理;简述了近年来利用抗磁性物质悬浮方法进行生物大分子晶体生长、分子细胞生物学及整体生物学等方面研究与应用的进展.   相似文献   

16.
阐述了利用多刚体系统动力学进行航天员舱外活动仿真EVA(Extra Vehicular Activity)的必要性.给出了应用计算多刚体系统动力学建立的通用失重人体4关节反向运动学与反向动力学模型.选取典型的实例,在对其进行适当简化的基础上,运用通用模型对其进行仿真计算,计算时为考虑失重对人体质量、惯量与力量等参数的影响,对通用模型进行了修正.利用能量比较法对结果进行分析,得出当手部的运动轨迹半径与角速度减小、时间延长,髋关节做前驱运动时航天员工作最为节省能量.通过能量比较法计算得到了人体运动时各关节作功最为节省能量的范围.计算方法对航天员舱内外活动仿真及工效分析有一定的参考价值.   相似文献   

17.
This paper speculates about the interplay between adaptational modifications with mutation and selection. Gravity effects are supposed to be very well suited to prove the role of direct adaptations for phylogenic processes. The speculation is based on strong hints that the cell in general reacts to accelerations (besides other mechanical stimuli) in the order of 1g and near weightlessness. Several-generations experiments in space may contribute to solve this fundamental question of evolution.  相似文献   

18.
In the primary roots of lettuce shoots grown under altered gravitational conditions--180 degrees inversion on the centrifuged clinostat, horizontal clinostat and in dynamic weightlessness--localization of the cellular organelles, cell morphology and peculiarities of growth have been studied. Significant changes took place in the localization of amyloplasts on the horizontal clinostat. The changes of amyloplast position in the cap cells on the horizontal clinostat and under weightlessness are similar. A change of the normal shoot position (180 degrees inversion and horizontal clinostat) causes an inhibition of growth. Weightlessness increases the length of axial organs and cells in the zone of elongation, but decreases the nitotic index in comparison to the centrifuged control. The anlysis of the formation of generative organs has been carried out for Arabidopsis plants grown on board the orbital station Salyut-6. The ability of plants to undergo vegetative growth and to pass through early phases of generative development under weightlessness was confirmed.  相似文献   

19.
Pleurodeles waltl (amphibian, Urodele) is an appropriate biological model for space experiments on a vertebrate. One reason for interest in this animal concerns the study of the effects of absence of gravity on embryonic development. First, after mating (on Earth) the females retain live, functional sperm in their cloacum for up to 5 months, allowing normal in vivo fertilisation after hormonal stimulation. Second, their development is slow, which allows analyses of all the key stages of ontogenesis from the oocyte to swimming tailbud embryos or larvae. We have performed detailed studies and analyses of the effects of weightlessness on amphibian Pleurodeles embryos, fertilised and allowed to develop until the swimming larvae stage. These experiments were performed in space during three missions on the MIR-station: FERTILE I, FERTILE II and NEUROGENESIS respectively in 1996, 1998 and 1999. We show that in microgravity abnormalities appeared at specific stages of development compared to 1g-centrifuge control embryos and 1g-ground control embryos. In this report we describe abnormalities occurring in the central nervous system. These modifications occur during the neurulation process (delay in the closure of the neural tube and failure of closure of this tube in the cephalic area) and at the early tailbud stage (microcephaly observed in 40% of the microgravity-embryos). However, if acephalic and microcephalic embryos are not taken into account, these abnormalities did not disturb further morphological, biochemical and functional development and the embryos were able to regulate and a majority of normal hatching and swimming larvae were obtained in weightlessness with a developmental time-course equivalent to that of 1g-centrifuge control embryos (on the MIR station) and 1g-ground control embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号