首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A concentrated binary system (Ge-Si) and a dilute one (Ge-Ga) have been solidified at 1 g, in a new vertical Bridgman furnace where radial thermal gradients have been minimized. Very different solutal boundary layer extents (δGe-Si = 3 cm, δGe-Ga = 2.5 mm) obtained for both systems solidified in the same thermal conditions are explained by simple analytical hydrodynamic models. It is demonstrated that :1. The convective transport of Ga in the Ge-Ga system is due to the unavoidable residual horizontal thermal gradients associated with discontinuity of thermal properties at the solid-liquid interface.2. The larger boundary layer extent observed for Ge-Si and the corresponding pure diffusive transport is the result of the stabilizing effect of the longitudinal solutal gradient in this system.Thus, in the case of dilute systems, convective effects can only be cancelled through a reduction of the gravity level. On the opposite, pure diffusive solute transport can be achieved in the vertical configuration a 1 g in the case of concentrated systems where a stabilizing solutal effect is operating.  相似文献   

2.
Hα filtergrams and magnetograms indicate that bright features (such as plages and granulation boundaries) correspond to areas of strong vertical magnetic fields and dark features (such as fibrils and filaments) are associated with strong horizontal magnetic field. It was suggested by /1/ that there is an excess dissipation of waves, available for heating, in regions of vertical magnetic fields. With this suggestion in mind, we have investigated the physical heating mechanism due to ponderomotive forces exerted by turbulent waves along curved magnetic flux loops. Results show that the temperature difference (ΔT) between the inside and outside of the flux loop can be classified into three parts; ΔT = ΔT1 + ΔT2 + ΔT3; in which ΔT1 and ΔT3 represent the heating or cooling effect from the ponderomotive force, and ΔT2 is the heating effect due to conversion of turbulent energy from the localized plasma. The specific physical mechanism (i.e., the ponderomotive forces exerted by turbulent waves), is used to illustrate solar atmospheric heating via an example leading to the formulation of plages.  相似文献   

3.
Previous chemical vapor transport experiments of the GeSe-GeI4 system performed under reduced gravity conditions /1/ yielded crystals of considerably improved surface and bulk morphology. In addition, the mass transport rates observed in microgravity environment were significantly greater than predicted. A quantitative thermodynamic analysis of the solid-gas phase reactions of the GeSe-GeI4 system revealed the multi-component, multi-reaction nature of the vapor phase /2/. Continued transport studies on ground of the GeSe-GeI4 system in the presence of inert gases provided experimental evidence for the existence of a boundary layer /2/ and its thickness dependence on GeI4 pressure in closed tube systems. Systematic transport rate measurements for different orientations of the density gradient relative to the gravity vector demonstrated the effects of ampoule inclination on mass flux /3/. Based on a computational model for simultaneous chemical vapor transport, sublimation, and Stefan flow /3/, the excellent agreement of predicted with ground-based experimental mass transport rates over wide pressure ranges /3/ confirmed the validity of the model and the discrepancy between observed and expected transport rates of the GeSe-GeI4 system in microgravity.  相似文献   

4.
5.
Recently a new model for explaining the observations of preferential heating of heavy ions in the polar solar corona was proposed ( and ). In that model the ion energization mechanism is the ion reflection off supercritical quasi-perpendicular collisionless shocks in the corona and the subsequent acceleration by the motional electric field E = −V × B/c. The mechanism of heavy ion reflection is based on ion gyration in the magnetic overshoot of the shock. The acceleration due to the motional electric field is perpendicular to the magnetic field, giving rise to large temperature anisotropy with T ? T, in agreement with SoHO observations. Such a model is tested here by means of a one dimensional test particle simulation where ions are launched toward electric and magnetic profiles representing the shock transition. We study the dynamics of O5+, as representative of coronal heavy ions for Alfvénic Mach numbers of 2–4, as appropriate to solar corona. It is found that O5+ ions are easily reflected and gain more than mass proportional energy with respect to protons.  相似文献   

6.
Lyman α and 58.4 nm HeI radiations resonantly scattered were observed with EUV spectrophotometers flown on Venera 11 and Venera 12. The altitude distribution of hydrogen was derived by limb observations from 250 km (exobase level) to 50,000 km. In the inner exosphere (up to ? 2,000 km of altitude) the distribution can be described by a classical exospheric distribution with TC = 275 ± 25 K and n = 4?2+3 × 104 atom. cm?3 at 250 km. The integrated number density from 250 to 110 km (the level of CO2 absorption) is 2.1 × 1012 atom. cm?2, a factor of 3 to 6 lower than that predicted by aeronomical models. This number density decreases from the morning side to the afternoon side, or alternately from equatorial to polar regions. Above 2,000 km a “hot” hydrogen population dominates, which can be simulated by T = 103K and n = 103 atom. cm?3 at the exobase level.The optical thickness of helium above 141 km (the level of CO2 absorption for 58.4 nm radiation) was determined to be τo = 3, corresponding to a density at 150 km of 1.6 × 106 cm?3. This is about 3 times less than what was obtained with the Bus Neutral Mass Spectrometer of Pioneer Venus, and about twice less than ONMS measurements, but is in agreement with earlier EUV measurement by Mariner 10 (2 ± 1 × 106 cm?3).  相似文献   

7.
Forced convective heat transfer is one of the major factors that dominate the thermal behaviors of aerostats. Due to the large physical size, the convection around an aerostat has high Reynolds numbers. The existing forced convective heat transfer correlations are limited to the Reynolds number lower than 105, which are not appropriate for aerostat applications. Therefore, it is necessary to obtain a convective heat transfer correlation applicable to spherical aerostats at high Reynolds numbers. In this paper, steady convective heat transfer from an isothermal spherical aerostat is numerically investigated. The numerical simulation is carried out by commercial computational fluid dynamic software with the Reynolds number from 20 to 108. The average Nusselt numbers are obtained and compared with those of available in literature. Based on regression and optimization with software, a new piecewise correlation of Nusselt number is proposed. The verification shows that the new correlation is reliable.  相似文献   

8.
A numerical model, based on Parker’s transport equation, describing the modulation of anomalous cosmic rays and containing diffusive shock acceleration is applied. The role of radial perpendicular diffusion at the solar wind termination shock, and as the dominant diffusion coefficient in the outer heliosphere, is studied, in particular the role it plays in the effectiveness of the acceleration of anomalous protons and helium when its latitude dependence is changed. It is found that the latitudinal enhancement of radial perpendicular diffusion towards the heliospheric poles and along the termination shock has a prominent effect on the acceleration of these particles. It results in a ‘break’ in the energy spectrum for anomalous protons at ∼6.0 MeV, causing the spectral index to change from E−1.38 to E−2.23, but for anomalous helium at ∼3.0 MeV, changing the spectral index from E−1.38 to E−2.30. When approaching the simulated TS, the changes in the modulated spectra as they unfold to a ‘steady’ power law shape at energies below 50 MeV are much less prominent as a function of radial distances when radial perpendicular diffusion is increased with heliolatitude.  相似文献   

9.
We investigate the role of gravity in a linear stability analysis of the onset of coupled convective and morphological instabilities during directional solidification at constant velocity of a dilute alloy of tin in lead. For solidification vertically upwards, the temperature gradient alone would cause a negative density gradient and the solute gradient alone would cause a positive density gradient. Two types of instability are found, a convective type that occurs for long wavelengths and a morphological type that occurs for short wavelengths. In general, these are coupled but the morphological instabilities are practically independent of gravity and thus correspond to the predictions of previous morphological stability theory in which density changes and convection are neglected. The convective instabilities depend strongly on gravity; for a growth velocity of V = 1 μm/s and a temperature gradient in the liquid of GL = 200 K/cm, the critical concentrations for convective instabilities are 3.1 × 10?4, 3.1 × 10?2 and 2.39 wt. % for ge = 980 cm/s2, 10?4 ge and 10?6 ge, respectively. For low velocities, the convective instabilities occur at much lower solute concentrations than the morphological instabilities whereas at high velocities, the reverse is true. At intermediate velocities where the changeover takes place, there are oscillitory instabilities of mixed character whose periods range from 60 s at ge to 6 × 104 s at 10?6 ge.  相似文献   

10.
Recent two-dimensional (2-D) particle-in-cell (PIC) simulations have shown that there is a critical thickness of a current sheet, above which no significant saturation amplitude of the 2-D tearing (TI) mode can be expected. Here, we have introduced the initial electron temperature anisotropy (αe0 = Te⊥/Te|| > 1), which is known to raise significantly the linear growth rates, and inspected if αe0 > 1 can change the saturation level of the TI in a super-critical current sheet. Varying αe0 and D (D: the current sheet half-thickness) systematically, we have found that while αe0 boosts up the linear growth rate in both sub- and super-critical current sheets, macroscopic effects are obtained only in sub-critical current sheets, that is, energy transfer from the fastest growing short wavelength modes to longer wavelength modes are available only in the sub-critical regime. Since the critical thickness is a fraction of the ion inertial length, the tearing mode assisted by the electron temperature anisotropy alone, despite its significant boost in the linear growth rate, cannot be the agent for reconnection triggering in a current sheet of ion-scale thickness.  相似文献   

11.
The Moon and the moons of Mars should be extremely quiet seismically and could therefore become sensitive gravitational wave detectors, if instrumented properly. Highly sensitive displacement sensors could be deployed on these planetary bodies to monitor the motion induced by gravitational waves. A superconducting displacement sensor with a 10-kg test mass cooled to 2 K will have an intrinsic instrument noise of 10−16 m Hz−1/2. These sensors could be tuned to the lowest two quadrupole modes of the body or operated as a wideband detector below its fundamental mode. An interesting frequency range is 0.1–1 Hz, which will be missed by both the ground detectors on the Earth and LISA and would be the best window for searching for stochastic background gravitational waves. Phobos and Deimos have their lowest quadrupole modes at 0.2–0.3 Hz and could offer a sensitivity hmin ? 10−22 Hz−1/2 within their resonance peaks, which is within two orders of magnitude from the goal of the Big Bang Observer (BBO). The lunar and Martian moon detectors would detect many interesting foreground sources in a new frequency window and could serve as a valuable precursor for BBO.  相似文献   

12.
Propagation of UHE protons through CMB radiation leaves the imprint on energy spectrum in the form of Greisen–Zatsepin–Kuzmin (GZK) cutoff, bump (pile-up protons) and dip. The dip is a feature in energy range 1 × 1018–4 × 1019 eV, caused by electron–positron pair production on CMB photons. Calculated for power-law generation spectrum with index γg = 2.7, the shape of the dip is confirmed with high accuracy by data of Akeno-AGASA, HiRes, Yakutsk and Fly’s Eye detectors. The predicted shape of the dip is robust: it is valid for the rectilinear and diffusive propagation, for different discreteness in the source distribution, for local source overdensity, deficit, etc. This property of the dip allows us to use it for energy calibration of the detectors. The energy shift λ for each detector is determined by minimum χ2 in comparison of observed and calculated dip. After this energy calibration the absolute fluxes, measured by AGASA, HiRes and Yakutsk detectors remarkably coincide in energy region 1 × 1018–1 × 1020 eV. Below the characteristic energy Ec ≈ 1 × 1018 eV the spectrum of the dip flattens for both diffusive and rectilinear propagation, and more steep galactic spectrum becomes dominant at E < Ec. The energy of transition Etr < Ec approximately coincides with the position of the second knee E2kn, observed in the cosmic ray spectrum. The dip-induced transition from galactic to extragalactic cosmic rays at the second knee is compared with traditional model of transition at ankle, the feature observed at energy 1 × 1019 eV.  相似文献   

13.
Power-law spectra f(E)∝E?2.7 of < 40 keV suprathermal ions within ~107 km of propagating interplanetary shocks are explained by diffusive scattering near a plane shock. The theory fits the 25 November 1977 event with a mean free path perpendicular to the shock with is 0.01 AU in front of the shock and less than .0003 AU behind it, for 1 keV ions. The theory predicts a steepening spectrum at higher energies, of the form f(v)∝v?4exp(??λdv/ur) where u = (ΔV)2/2VW depends on the plasma velocity jump ΔV and the plasma speed VW and mean free path λ in front of the shock  相似文献   

14.
Small changes in the vorticity of winter storms, responding to solar wind variations, are found in winters from 1957 to 2011, and are greater for winters with higher levels of stratospheric volcanic aerosols. Using 1993–2011 data, the response of the vorticity area index (VAI) is shown to be of larger amplitude when the days of minima in the relativistic electron flux (REF) precipitating from the radiation belts are used, instead of heliospheric current sheet (HCS) crossings, as key days in superposed epoch analyses. The HCS crossings mostly occur within a few days of the REF minima. The VAI is an objective measure of the area of high cyclonic vorticity, and for the present work is derived from ERA-40 and ERA-Interim reanalyses of global meteorological data. The VAI dependencies on the stratospheric aerosol content (SAC) and the REF are consistent with a model in which the ionosphere-earth current density (Jz) affects cloud microphysics. One of the ways in which Jz is modulated is by changes in stratospheric column resistance (S), which is increased by stratospheric aerosols. Because S is in series with the tropospheric column resistance (T), Jz modulation by REF requires that S be not negligible with respect to T. So the Jz modulation and the VAI response appear when the SAC is very high, or the REF reductions (which also increase S) are very deep, and when the product of the SAC and the reciprocal of the REF exceeds a threshold value dependent on T.  相似文献   

15.
We study energetic particle transport in a magnetic field configuration which models the solar wind magnetic turbulence plus the background field. A power-law Fourier amplitude is used for the fully 3D turbulence model, and in order to model anisotropic turbulence, the constant amplitude surfaces in k space are ellipsoids. The turbulence correlation lengths parallel (perpendicular) to the background magnetic field l (l) are varied in a wide range, and proton energies from 1 MeV to 10 GeV are assumed. Considering propagation on a distance corresponding to 1 AU, it is found that transport parallel and perpendicular to the background field heavily depends on the turbulence anisotropy, that is on the ratio l/l. The spatial distribution of energetic particle follows the shape of magnetic flux tube up to about 10 MeV, while for larger energies the structure of the magnetic flux tube is progressively washed out. The scatterplots of particle distribution show intermittent, non Gaussian structures for l  l (quasi slab turbulence), while a more diffusive, Gaussian structure is obtained for l  l (quasi 2D turbulence). The long time behavior of transport shows that anomalous (subdiffusive perpendicular and superdiffusive parallel) transport regimes are obtained for l  l, while Gaussian diffusive transport is obtained for both l  l and the isotropic turbulence case.  相似文献   

16.
17.
The feasibility of determining cirrus “emissivity” from combined stereoscopic and infrared satellite observations in conjunction with radiosounding data is investigated for a particular case study. Simultaneous visible images obtained during SESAME-1979 from two geosynchronous GOES meteorological satellites were processed on the NASA/Goddard interactive system (AOIPS) and were used to determine the stereo cloud top height ZC as described by Hasler [1]. Iso-contours of radiances were outlined on the corresponding infrared image. Total brightness temperature TB and ground surface brightness temperature TS were inferred from the radiances. The special SESAME network of radiosoundings was used to determine the cloud top temperature TCLD at the level defined by ZC. The “effective cirrus emissivity” NE where N is the fractional cirrus cloudiness and E is the emissivity in a GOES infrared picture element of about 10 km × 10 km is then computed from TB, TS and TCLD.  相似文献   

18.
OPTIS has been proposed as a small satellite platform in a high elliptical orbit (apogee 40,000 km, perigee 10,000 km) and is designed for high precision tests of foundations of Special and General Relativity. The experimental set-up consists of two ultrastable Nd:YAG lasers, three crossed optical resonators (monolithic cavities), an ensemble of atomic clocks, an optical comb generator, laser tracking devices and a drag-free control system. OPTIS enables improved tests of (1) the isotropy and (2) constancy of the speed of light, (3) special relativistic time dilation, (4) the universality of the gravitational redshift by comparison of various clocks, can measure (5) the absolute value of the gravitational redshift, (6) the Lense–Thirring effect and (7) the perigee advance and (8) can make a test of a hypothetical Yukawa part in the gravitational potential. To avoid any influence from atmospheric drag, solar radiation, or Earth albedo, the satellite needs drag-free control to depress the residual acceleration down to 10−14 m/s2 in the frequency range between 10−2 and 10−3 Hz. Precise thermal control must be used to stabilize the cavity temperature to within one part in 107 at time scales of 100 s and to one part in 105 on the orbit time scale.  相似文献   

19.
985 whistlers observed between 1970 and 1975 in Hungary have been processed for equatorial plasmaspheric electron density and tube electron content above 1000 km (NT). The hourly median value of NT exhibits a diurnal variation with an amplitude of 1×1013 electrons/cm2-tube. 75 per cent of the electron flux values obtained from the time variation of NT are lower than 6×108 el cm?2s?1, while in some cases the fluxes reach a value as high as 3×109 el cm?2s?1. Between 17 and 04 LT the dominant flux direction is toward the ionosphere. The data also indicate that the day to day filling of the plasmasphere after magnetic disturbances continues through several days without exhibiting saturation, with higher filling rates for lower values of average Kp.  相似文献   

20.
In recent years Global Navigation Satellite System’s signals Reflectometry (GNSS-R) has stood as a potential powerful remote sensing technique to derive scientifically relevant geophysical parameters such as ocean altimetry, sea state or soil moisture. This has brought out the need of designing and implementing appropriate receivers in order to track and process this kind of signals in real-time to avoid the storage of huge volumes of raw data. This paper presents the architecture and performance of the Global Positioning System (GPS) Reflectometer Instrument for PAU (griPAU), a real-time high resolution Delay-Doppler Map reflectometer, operating at the GPS L1 frequency with the C/A codes. The griPAU instrument computes 24 × 32 complex points DDMs with configurable resolution (ΔfDmin = 20 Hz, Δτmin = 0.05 chips) and selectable coherent (minimum = 1 ms, maximum = 100 ms for correlation loss Δρ < 90%) and incoherent integration times (minimum of one coherent integration period and maximum not limited but typically <1 s). A high sensitivity (DDM peak relative error = 0.9% and DDM volume relative error = 0.03% @ Ti = 1 s) and stability (Δρt = −1 s−1) have been achieved by means of advanced digital design techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号