首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements of the bulk flow of plasma in the outer magnetosphere were first made a little over a decade ago with Los Alamos instruments on the Vela satellites. During the intervening years, as flow measurements have been made with improved instruments and by other satellites they have come to play a crucial role in the development of our understanding of the structure and dynamics of the magnetosphere. For example, they were the means of discovery of the magnetosphere's boundary layer and of plasma vortices within the plasma sheet. They were the essential ingredient in the identification of signatures of magnetic reconnection at the magnetopause. And they were indispensible in clarifying the complex phenomena in the magnetotail accompanying substorms and in showing that these phenomena are consistent with a substorm model involving magnetic reconnection at a near-earth neutral line. Most recently, magnetotail plasma flow measurements by the ISEE-3 satellite at distances as great as 230 RE have been instrumental in fixing the average location of the “distant” neutral line at ~ 60 to 120 RE and in identifying plasmoids (i.e., severed sections of the plasma sheet), released during substorms and escaping down-tail. This paper reviews the features of magnetotail plasma flow, describes the most recent observations, and discusses their implications for magnetospheric physics.  相似文献   

2.
采用2(1/2)维全粒子电磁模拟方法研究了等离子体片中稳态对流及局地爆发高速流对磁层亚暴触发过程的影响.研究发现,地向瞬时局地高速流可触发磁场重联,导致储存于磁尾磁场能量的快速释放.但是,等离子体片稳态对流可抑制磁尾磁场重联过程.此项研究结果表明,局地爆发高速流能够触发磁层亚暴;而行星际磁场(IMF)持续南向时的稳态磁层对流期间,不易发生亚暴.   相似文献   

3.
Three dimensional structure of the fast convection flow in the plasma sheet is examined using magnetohydrodynamic (MHD) simulations on the basis of spontaneous fast reconnection model. The fast flow observed in the near-Earth magnetotail is one of the key phenomena in order to understand the causal relationship between magnetic substorm and magnetic reconnection. In this paper, we focus on this earthward fast flow in the near-Earth magnetotail. Our previous studies have shown that the fast reconnection produces the Alfvénic fast reconnection outflow and drastic magnetic field dipolarization in the finite extent. In this paper, the results of our simulations are compared with those of the in-situ observations in the geomagnetotail. They have consistent temporal profiles of the plasma quantities. It is suggested that the fast convection flows are caused by spontaneous fast reconnection.  相似文献   

4.
Methods are discussed to estimate energy transfer from the solar wind to the magnetosphere during substorm growth phases. Observational and modeling constraints are then used to assess quantitatively the total amount of energy stored in the magnetotail. The major avenues of energy dissipation are examined and the energy that is released in the form of plasma sheet heating, ionospheric Joule heating, plasmoids, and energetic particle production during substorms is assessed. Energy sources are evaluated to drive substorm evolution in a particularly well-observed case: stored tail-lobe energy is sufficient to drive observed substorm dissipation processes (by large margins). On the other hand, energy in the closed field lines of the plasma sheet is insufficient to supply the substorm energy. Hence, magnetic reconnection is required on energy grounds during well-observed substorm cases.  相似文献   

5.
The role of waves in the dynamics of the magnetotail has long been a topic of interest in magnetospheric physics. The characteristics of Electrostatic Solitary Waves (ESWs) associated with reconnection have been studied statistically in the magnetotail by surveying the large amounts data obtained from Waveform Capture (WFC) which is an important component of Plasma Wave Instrument (PWI) on the Geotail spacecraft. About 150 reconnection events with WFC data available are selected, and approximately 10 thousands of ESW waveforms are picked up by hands for statistical study. The ESWs are observed near diffusion region and near the plasma sheet boundary layer (PSBL). Two kinds of waveforms of ESWs are observed: bi-polar and tri-polar pulses. It is found that the pulse width of the ESWs is in the order of 1–5 ms and the peak-to-peak amplitude is in the order of 0.1–5 mV/m. The amplitudes of ESWs are larger in the near-earth tail region than that in deep tail region. ESWs have been observed with or without guide magnetic field 〈By〉. The characteristics of ESWs in different reconnection region and under different strength of guild magnetic field, their possible generation mechanism will be discussed.  相似文献   

6.
Magnetic reconnection in traditional, two-dimensional theory can be closely associated with topological properties of the magnetic field, separatrices, neutral lines, or separators. Such well-defined topological properties may no longer exist, or become hopelessly complicated, in more general three-dimensional configurations, that otherwise behave physically quite similarly to the two-dimensional configurations. We discuss generalized definitions of reconnection applied to such situations and illustrate typical properties with simulations of three-dimensional reconnection in the magnetotail.  相似文献   

7.
Both theory and simulation have played important roles in defining and illuminating the key mechanisms involved in substorms. Basic theories of magnetic reconnection and of interchange and ballooning instabilities were developed more than 50 years ago, and these plasma physical concepts have been central in discussions of substorm physics. A vast amount of research on reconnection, including both theoretical and computational studies, has helped provide a picture of how reconnection operates in the collisionless environment of the magnetosphere. Still, however, we do not fully understand how key microscale processes and large-scale dynamics work together to determine the location and rate of reconnection. While in the last twenty years, it has become clear that interchange processes are important for transporting plasma through the plasma sheet in the form of bursty bulk flows and substorm expansions, we still have not reached the point where simulations are able to realistically and defensibly represent all of the important aspects of the phenomenon. More than two decades ago it was suggested that the ballooning instability, the basic theory for which dates from the 1950s, may play an important role in substorms. Now the majority of experts agree that regions of the plasma sheet are often linearly unstable to ideal-MHD ballooning. However, it is also clear that kinetic effects introduce important modifications to the MHD stability criterion. It is still uncertain whether ballooning plays a leading role in substorms or has just a minor part. Among the different types of simulations that have been applied to the substorm problem, global MHD codes are unique in that, in a sense, they represent the entire global substorm phenomenon, including coupling to the solar wind and ionosphere, and the important mechanisms of reconnection, interchange, and ballooning. However, they have not yet progressed to the point where they can accurately represent the whole phenomenon, because grid-resolution problems limit the accuracy with which they can solve the equations of ideal MHD and the coupling to the ionosphere, and they cannot accurately represent small-scale processes that violate ideal MHD.   相似文献   

8.
行星际磁场北向时磁层顶区磁场重联的全球模式   总被引:2,自引:0,他引:2  
在对背阳面磁层顶区局域磁场重联模拟的基础上提出了一个行星际磁场北向时磁层顶磁场重联的全球模式。行星际磁场北向时碰层顶磁场重联导致近地尾瓣的能量被输送到远磁尾,太阳风能量不在磁尾储存,向阳面磁层顶变厚,磁层受到一系列扰动。   相似文献   

9.
地球磁层开放磁通Fpc是研究磁层动力学过程的重要参数之一,其与日侧和夜侧磁尾的磁场重联具有密切关系. 日侧重联率控制稳定状态下磁层开放磁通的大小,主要受各种太阳风条件的影响. 其中,行星际磁场(IMF)的时钟角是影响日侧重联率的一个重要因素. 通过全球MHD模拟,研究了行星际磁场时钟角θc与地球磁层开放磁通Fpc 之间的关系. 结果表明,开放磁通Fpc随着行星际磁场时钟角 θc逐渐接近180°(纯南向)而逐渐增加,两者之间的关系近似为Fpc∝sin3/2(θc/2). 由于表征行星际磁场与地球磁场剪切程度的θc影响日侧重联率,从而控制Fpc,该关系反映了二者之间的物理联系.   相似文献   

10.
王洋 《空间科学学报》2019,39(5):603-612
2002年8月28日09:50UT-10:50UT,Cluster卫星在地球磁尾观测到一次导向场磁场重联事件.卫星观测到磁场重联扩散区附近清晰的霍尔(Hall)四极型磁结构.由于导向场的存在,该四极型结构被扭曲变形.在该磁场重联事件中,卫星观测到多个磁通量绳,大部分磁通量绳的核心场极性与导向场极性一致.但是,其中一例磁通量绳的核心场结构极性较复杂.该例磁通量绳中心区域核心场强度出现峰值,核心场极性和导向场极性一致;中心以外区域的核心场极性和导向场极性相反.这种复杂核心场结构以前未见报道.通过最小方向导数法,发现该磁通量绳的轴向是弯曲的.C1和C3卫星穿越了磁通量绳弯曲部分,探测到核心场极性变化;C2和C4卫星位于C1和C3卫星的北侧,仅穿越了磁通量绳弯曲处的一部分,故核心场具有单极性.   相似文献   

11.
Magnetic reconnection is one of the most fundamental processes in the magnetosphere. We present here a simple method to determine the essential parameters of reconnection such as reconnected flux and location of the reconnection site out of single spacecraft data via remote sensing. On the basis of a time-dependent reconnection model, the dependence of the reconnected flux on the magnetic field z-component Bz is shown. The integral of Bz over time is proportional to the reconnected flux and depends on the distance between the reconnection site and the actual position where Bz is measured. This distance can be estimated from analysis of magnetic field Bz data. We apply our method to Cluster measurements in the Earth’s magnetotail.  相似文献   

12.
This paper reports the spatial and temporal development of bursty bulk flows (BBFs) created by reconnection as well as current disruptions (CDs) in the near-Earth tail using our 3-D global electromagnetic (EM) particle simulation with a southward turning interplanetary magnetic field (IMF) in the context of the substorm onset. Recently, observations show that BBFs are often accompanied by current disruptions for triggering substorms. We have examined the dynamics of BBFs and CDs in order to understand the timing and triggering mechanism of substorms. As the solar wind with the southward IMF advances over the Earth, the near-Earth tail thins and the sheet current intensifies. Before the peak of the current density becomes maximum, reconnection takes place, which ejects particles from the reconnection region. Because of earthward flows the peak of the current density moves toward Earth. The characteristics of the earthward flows depend on the ions and electrons. Electrons flow back into the inflow region (the center of reconnection region), which provides current closure. Therefore the structure of electron flows near the reconnection region is rather complicated. In contrast, the ion earthward flows are generated far from the reconnection region. These earthward flows pile up near the Earth. The ions mainly drift toward the duskside. The electrons are diverted toward the dawnside. Due to the pile-up, dawnward current is generated near Earth. This dawnward current dissipates rapidly with the sheet current because of the opposite current direction, which coincides with the dipolarization in the near-Earth tail. At this time the wedge current may be created in our simulation model. This simulation study shows the sequence of the substorm dynamics in the near-Earth tail, which is similar to the features obtained by multisatellite observations. Identification of the timing and mechanism of triggering substorm onset requires further studies in conjunction with observations.  相似文献   

13.
In the past two years, much progress is made in magnetospheric physics by using the data of Double Star Program, Cluster, THEMIS, RBSP, Swarm missions etc., or by computer simulations. This paper briefly reviews these works based on papers selected from the 191 publications from January 2014 to December 2015. The subjects cover various sub-branches of magnetospheric physics, including geomagnetic storm, magnetospheric substorm, magnetic reconnection, solar windmagnetosphere-ionosphere interaction, radiation belt, outer magnetosphere, magnetotail, plasmasphere, geomagnetic field, auroras and currents.   相似文献   

14.
The patterns of reconnection in the Earth magnetotail and in the solar corona above the active region are presented. The electric field and field-aligned currents (FAC) generation in the current sheet are discussed.  相似文献   

15.
In the past two years, much progress has been made in magnetospheric physics by using the data of Double Star Program, Cluster, THEMIS, RBSP, Swarm, MMS, ARTEMIS, MESSENGER missions etc., or by computer simulations. This paper briefly reviews these works based on papers selected from the 227 publications from January 2016 to December 2017. The subjects cover most sub-branches of magnetospheric physics, including geomagnetic storm, magnetospheric substorm, magnetic reconnection, solar wind-magnetosphereionosphere interaction, radiation belt, plasmasphere, outer magnetosphere, magnetotail, geomagnetic field, auroras, and currents.   相似文献   

16.
We discuss the kinetic processes of plasma thermalization, acceleration, and mixing in magnetic reconnection. Non-Maxwellian, gyrotropic ion distribution functions such as anisotropic ion beams in the plasma sheet boundary layer (PSBL) and counter-streaming ions (CSIs) in the plasma sheet are often observed during a plasmoid passage of a satellite in the Earth's magnetotail. Non-gyrotropic ion distribution functions are also sometimes observed just after the passage of the plasmoid. We study the behavior of non-Maxwellian ion distribution functions observed by GEOTAIL. We further study theoretically the ion dynamics by using a particle-in-cell simulation, and discuss the role of non-Maxwellian distribution functions in magnetic reconnection.  相似文献   

17.
来自电离层的尾向流对近地磁场位形的影响   总被引:3,自引:2,他引:1  
探测一号(TC-1)卫星的观测结果表明,尾向流能够拉伸近地磁尾的磁力线,从而导致磁场位形改变.尾向流具有垂直于磁场的速度分量,这种垂直磁场的速度分量会导致磁力线向尾向拉伸,磁场的结构由偶极型变为非偶极型.而随尾向流的终止,地向流的出现,磁场的结构由非偶极型变为偶极型,磁力线恢复原状.另外在磁场的结构由非偶极型变为偶极型的过程中,伴随磁能的释放热离子温度的迅速升高,温度由各向同性逐渐趋向各向异性.其次,观测结果显示来自电离层的尾向流对磁场By分量有重要的影响,能够引起磁场By分量的显著增强.上述分析结果表明来自电离层的尾向流对近地磁尾动力学过程有着重要的影响.   相似文献   

18.
Substorm onset timing is a critical issue in magnetotail dynamics research. Solar wind energy is accumulated in the magnetosphere and the configuration of the magnetosphere evolves toward an unstable state during the growth phase. At some point, the expansion phase begins and the stored energy is released through a variety of processes that return the magnetosphere to a lower energy state. In recovery the various processes die away. Unfortunately, the ground and magnetospheric signatures of onset, i.e. energy release, can be seen both in the growth phase prior to onset and in the expansion phase after onset. Some investigators refer to each of these events as a substorm. Tail observations suggest that most substorms have one event that differentiates the behavior of the tail field and plasma. We refer to this time as the “main substorm onset”. Each substorm associated phenomenon is timed independently and then compared with main substorm onsets. ISEE-2 tail observations are used to examine the tail lobe magnetic conditions associated with substorms because ISEE-2 orbit has a high inclination and frequently observes lobe field. Approximately 70 ∼ 75% of tail lobe Bt and Bz change are associated with the main substorm onset. If the satellite is more than 3 Re above (below) the neutral sheet, 86% (57%) of plasma pressure dropouts are associated with substorms. We interpret our results as evidence that the effect of the growth phase is to drive the magnetosphere towards instability. As it approaches global instability local regions become temporarily unstable but are rapidly quenched. Eventually one of these events develops into the global instability that releases most of the stored energy and returns the magnetosphere to a more stable configuration.  相似文献   

19.
The collisionless plasma environment at the current sheet of the Earth’s magnetotail is subjected to fast dynamic evolutions such as tearing instability. By considering agyrotropic pressure for electron and ion components of a collisionless plasma, we analytically investigate the dynamics of tearing mode instability, in which, breaking the frozen-in condition can either be provided by the electron inertia or by agyrotropic electron pressure. A set of linearized Hall-Magnetohydrodynamic (MHD) equations describes the evolution of tearing mode in a sheared force-free field. The presented scaling analysis shows that if the plasma-ββ exceeds a specified value, then the main mechanism of magnetic reconnection process is the nongyrotropic electron pressure. In this regime, the role played by agyrotropic ion pressure inside the reconnection layer is out of significance. Therefore, the electron-MHD framework, adequately, describes the dynamics of tearing instability with a growth rate which is much faster compared to the cases with a dominated bulk inertia or a gyrotropic plasma pressure.  相似文献   

20.
构建了一个可以得到火星赤道面上磁场分布的模型. 模型根据卫星观测数据, 提出了火星电离层、磁层顶和磁尾电流片上都各自通有电流的假设. 由电流的连续性条件可知, 这三种背景条件下的电流之间满足一定关系, 即火星磁层顶上的总电流是电离层上的总电流与磁尾电流片上的总电流之和. 这些电流产生的磁场与太阳风磁场共同构成了火星赤道面上磁场分布. 通过计算发现, 采用这种磁场模型得到的结果与目前卫星所观测的结果以及与采用其他方法得到的结果符合得较好.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号