首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The presence and movement of plasma density fluctuations in the F-region of the ionosphere are studied by monitoring phase and amplitude of radio waves propagating through the region. In this paper, we have used weak scattering theory and assumed the plasma density fluctuations to behave like phase changing diffraction screen. Appropriate relations for scintillation index S4, and phase variance δ? are derived and computed for different parameters of the plasma density irregularities of the ionosphere. SROSS-C2 satellite in situ measurements of plasma density fluctuations, which provide direct information about the structure and morphology of irregularities that are responsible for scintillation of radio waves, were used first time to develop a scintillation model for low latitude. It is observed that the scintillation index S4 and phase variance δ? depends on the strength of the plasma turbulence. Finally, the results obtained from modeling are compared and discussed with the available recent results.  相似文献   

2.
A centaure rocket, with payloads of Langmuir probe and Electric field probe, was launched from Thumba (8° 31'N, O° 47'S dip), India on February 12, 1981 at 1057 Hrs IST. The aim of the experiment was to study the role of localised electric fields in the generation of plasma density irregularities through cross field instability and the two-stream instability mechanism. The rocket was launched at a time when Type I irregularities were observed with VHF radar at Thumba.  相似文献   

3.
This investigation presents observations related to the generation of equatorial ionospheric irregularities (also known as equatorial spread F (ESF)) including ionospheric plasma bubbles and dynamic behavior of the ionospheric F-region in the South American sector during an intense geomagnetic storm in December 2006 (a period of low solar activity). In this work, ionospheric sounding observations and GPS data obtained between 13 and 16 December 2006 at several stations in the South American sector are presented. On the geomagnetically disturbed night of 14 and 15 December, ionospheric plasma bubbles were observed after an unusual uplifting of the F-region during pre-reversal enhancement (PRE) period. The unusual uplifting of the F-region during PRE was possibly associated with prompt penetration of electric field of magnetospheric origin. During the geomagnetic disturbance night of 14 and 15 December, strong oscillations due to the propagation of traveling ionospheric disturbances (TIDs) by the Joule heating in the auroral region were observed in the F-region at São José dos Campos (SJC, 23.2°S, 45.9°W; dip latitude 17.6°S), Brazil, and Port Stanley (PST, 51.6°S, 57.9°W; geom. latitude 41.6°S). The VTEC-GPS observations presented on the night of 14 and 15 December 2006 show both positive and negative storm phases in the South American sector, possibly due to changes in the large-scale wind circulation and changes in the O/N2 ratio in the southern hemisphere, respectively.  相似文献   

4.
A Langmuir probe operated in fixed bias mode was launched onboard a RH-560 rocket from the Sriharikota Range (SHAR, Lat.13° 42'N, Geog. Long.80° 14'E, dip 10°) India on October 1, 1980 at 21h03 IST, to study the electron density profile and the electron density irregularities in the equatorial spread-F. The payload was designed to study medium and large scale irregularities. A highly variable and structured electron density profile was obtained. This was the first rocket launch in the Indian zone during spread-F condition.  相似文献   

5.
The response of the ionospheric F-region in the equatorial and low latitude regions in the Brazilian sector during the super geomagnetic storm on 06–07 April 2000 has been studied in the present investigation. The geomagnetic storm reached a minimum Dst of −288 nT at 0100 UT on 07 April. In this paper, we present vertical total electron content (VTEC) and phase fluctuations (in TECU/min) from GPS observations obtained at Imperatriz (5.5°S, 47.5°W; IMPZ), Brasília (15.9°S, 47.9°W; BRAZ), Presidente Prudente (22.12°S, 51.4°W; UEPP), and Porto Alegre (30.1°S, 51.1°W; POAL) during the period 05–08 April. Also, several GPS-based TEC maps are presented from the global GPS network, showing widespread and drastic TEC changes during the different phases of the geomagnetic storm. In addition, ion density measurements on-board the satellite Defense Meteorological Satellite Program (DMSP) F15 orbiting at an altitude of 840 km and the first Republic of China satellite (ROCSAT-1) orbiting at an altitude of 600 km are presented. The observations indicate that one of the orbits of the DMSP satellite is fairly close to the 4 GPS stations and both the DMSP F15 ion-density plots and the phase fluctuations from GPS observations show no ionospheric irregularities in the Brazilian sector before 2358 UT on the night of 06–07 April 2000. During the fast decrease of Dst on 06 April, there is a prompt penetration of electric field of magnetospheric origin resulting in decrease of VTEC at IMPZ, an equatorial station and large increase in VTEC at POAL, a low latitude station. This resulted in strong phase fluctuations on the night of 06–07 April, up to POAL. During the daytime on 07 April during the recovery phase, the VTEC observations show positive ionospheric storm at all the GPS stations, from IMPZ to POAL, and the effect increasing from IMPZ to POAL. This is possibly linked to the equatorward directed meridional wind. During the daytime on 08 April (the recovery phase continues), the VTEC observations show very small negative ionospheric storm at IMPZ but the positive ionospheric storm effect is observed from BRAZ to POAL possibly linked to enhancement of the equatorial ionospheric anomaly.  相似文献   

6.
As is well known in the F-region of the ionosphere modified by high power HF radio waves broad-band electromagnetic stimulated emission (SEE) is observed. It was discovered both the beams of superthermal electrons and intensive small-scale irregularities in modified region. These magnetic field aligned irregularities have caviton shape — deep electron density holes. The presence of such irregularities and superthermal electrons create conditions for generation of transition emission. We consider this radiation mechanism for interpretation the SEE broad-band component.  相似文献   

7.
This paper attempts to examine the control of electron density and solar activity on the F-region electron temperature. This is achieved by obtaining coefficients relating electron temperature with electron density and solar activity by using incoherent scatter radar measurements at Arecibo for the period August 1966 to May 1977. These coefficients are then used to construct an empirical model of F-region electron temperature. The model values are compared with measurements at other locations and show reasonable agreement.  相似文献   

8.
Plasma of the free burning electric arc between Ag–SnO2–ZnO composite electrodes as well as brass electrodes were investigated. The plasma temperature distributions were obtained by Boltzmann plot method involving Cu I, Ag I or Zn I spectral line emissions. The electron density distributions were obtained from the width and from absolute intensity of spectral lines. The laser absorption spectroscopy was used for measurement of copper atom concentration in plasma. Plasma equilibrium composition was calculated using two independent groups of experimental values (temperature and copper atom concentration, temperature and electron density). It was found that plasma of the free burning electric arc between brass electrodes is in local thermodynamical equilibrium. The experimental verification of the spectroscopic data of Zn I spectral lines was carried out.  相似文献   

9.
This paper presents the first results of total electron content (TEC) depletions and enhancement associated with ionospheric irregularities in the low latitude region over Kenya. At the low latitude ionosphere the diurnal behavior of scintillation is driven by the formation of large scale equatorial depletions which are formed by post-sunset plasma instabilities via the Rayleigh–Taylor instability near the magnetic equator. Data from the GPS scintillation receiver (GPS-SCINDA) located at the University of Nairobi (36.8°E, 1.27°S) for March 2011 was used in this study. The TEC depletions have been detected from satellite passes along the line of sight of the signal and the detected depletions have good correspondence with the occurrence of scintillation patches. TEC enhancement has been observed and is not correlated with increases in S4 index and consecutive enhancements and depletions in TEC have also been observed which results into scintillation patches related to TEC depletions. The TEC depletions have been interpreted as plasma irregularities and inhomogeneities in the F region caused by plasma instabilities, while TEC enhancement have been interpreted as the manifestation of plasma density enhancements mainly associated with the equatorial ionization anomaly crest over this region. Occurrence of scintillation does happen at and around the ionization anomaly crest over Kenyan region. The presence of high ambient electron densities and large electron density gradients associated with small scale irregularities in the ionization anomaly regions have been linked to the occurrence of scintillation.  相似文献   

10.
The long-term (solar cycle) changes in the Sun and how it affects the ionospheric F-region observed at São José dos Campos (23.2° S, 45.9° W), Brazil, a location under the southern crest of the equatorial ionospheric anomaly, have been investigated in this paper. The dependence of the F-region peak electron density (foF2) on solar activity during the descending phase of the 23rd solar cycle for the periods of high, medium, and low solar activity has been studied. The ionospheric F-region peak electron densities observed during high and medium solar activity show seasonal variations with maxima close to the equinox periods, whereas during the low solar activity the maxima during the equinox periods is absent. However, during the low solar activity only change observed is a large decrease from summer to winter months. We have further investigated changes in the different ionospheric F-region parameters (minimum virtual height of the F-region (h′F), virtual height at 0.834foF2 (hpF2), and foF2) during summer to winter months in low solar activity periods, 2006–2007 and 2007–2008. Large changes in the two ionospheric parameters (hpF2 and foF2) are observed during summer to winter months in the two low solar activity periods investigated.  相似文献   

11.
In this paper, through a case study, an attempt has been made to bring out the relationship between post noon E-region electric field and post sunset F-region vertical plasma drift on quiet time Counter Electrojet (CEJ) days. Study carried out using the data from a multi frequency HF Doppler Radar and Digital Ionosonde located over Trivandrum (8.5° N; 77° E; 0.5° N dip lat.) a geomagnetic dip equatorial station in India during quite time CEJ days of the years 2004 and 2006, revealed some interesting aspects of the E region electrodynamics and post sunset F region electrodynamics. It has been observed that, in contrast to the normal electrojet (EEJ) days, the Pre-Reversal Enhancement (PRE) is either weakened or inhibited on CEJ days and the field reversal takes place much earlier than that on a normal day. It is suggested that even after the effects of the field reversal ceases to show up in the ground magnetic data, the reversed field may persist and shows up as a decrease in the PRE experienced by the F-region. In other words, the study indicates that the EEJ associated electrodynamics have a significant role in controlling the PRE.  相似文献   

12.
First comparison of in situ density fluctuations measured by the DEMETER satellite with ground based GPS receiver measurements at the equatorial anomaly station Bhopal (geographic coordinates (23.2°N, 77.6°E); geomagnetic coordinates (14.29°N, 151.12°E)) for the low solar activity year 2005, are presented in this paper. Calculation of the diurnal maximum of the strength of the equatorial electrojet, which can serve as precursor to ionospheric scintillations in the anomaly region is also done. The Langmuir Probe experiment and Plasma Analyzer onboard DEMETER measure the electron and ion densities respectively. Irregularities in electron density distribution cause scintillations on transionospheric links and there exists a close relationship between an irregularity and scintillation. In 40% of the cases, DEMETER detects the irregularity structures (dNe/Ne ? 5% and dNi/Ni (O+) ? 5%) and GPS L band scintillations (S4 ? 0.2) are also observed around the same time, for the low solar activity period. It is found that maximum irregularity intensity is obtained in the geomagnetic latitude range of 10–20° for both electron density and ion density. As the GPS signals pass through this irregularity structure, scintillations are recorded by the GPS receiver installed at the equatorial anomaly station, Bhopal it is interesting to note that in situ density fluctuations observed on magnetic flux tubes that pass over Bhopal can be used as indicator of ionospheric scintillations at that site. Many cases of density fluctuations and associated scintillations have been observed during the descending low solar activity period. The percentage occurrence of density irregularities and scintillations shows good correspondence with diurnal maximum of the strength of electrojet, however this varies with different seasons with maximum correspondence in summer (up to 66%) followed by equinox (up to 50%) and winter (up to 46%). Also, there is a threshold value of EEJ strength to produce density irregularities ((dNe/Ne)max ? 5%) and for moderate to strong scintillations (S4 ? 0.3) to occur. For winter this value is found to be ∼40 nT whereas for equinox and summer it is around 50 nT.  相似文献   

13.
A rocket borne payload for simultaneous measurement of the electric field along and perpendicular to the rocket spin axis and the electron density in the medium was developed and flown from Thumba (8° 31′N, 0° 47′S dip) onboard two Centaure rockets for the study of plasma dynamcis in the equatorial E-region. The arrangement of sensors in this payload allows near continuous measurements of some of these parameters to be made.  相似文献   

14.
Two rocket experiments KOMBI-SAMA with plasma injection at height 100–240 km were performed in August 1987 in the region of Brazilian magnetic anomaly (L = 1.25). The launching time of the rocket was determined so that plasma injection was at the time when satellite COSMOS 1809 passed as close as possible to magnetic tube of injection. Caesium plasma jet was produced during ≥ 300 s by electric plasma generator separated from the payload. By diagnostic instruments on board of the rocket and the satellite were registered energetic particle fluxes and plasma wave activities stimulated by plasma injection. When the satellite passed the geomagnetic tube intersecting the injection region an enhancement of ELF emission at 140 Hz, 450 Hz by 2 times was registered on board the satellite. An enhancement of energetic particles (E > 40 keV) flux by 4–5 times was registered on board the rocket. Observed ELV emission below 100 Hz is interpreted as generation of oblique electromagnetic ion-cyclotron waves due to drift plasma instability at the front of the plasma jet.  相似文献   

15.
The problem of day-to-day variability in onset of equatorial spread F (ESF) is addressed using data from the 2002 COPEX observational campaign in Brazil and numerical modeling. The observational results show that for values of virtual height of the F layer base less than 355 km at around 18:35 LT, and for the prereversal peak enhancement of the vertical plasma drift (Vp) less than 30 m/s, the spread-F (ESF) was absent on four nights over Cachimbo (9.5°S, 54.8°W, dip latitude = −2.1°). In this work we analyze the geophysical conditions for the generation of the irregularities by comparing the nights with and without the ESF. In the comparison a numerical code is used to simulate plasma irregularity development in an extended altitude range from the bottom of the equatorial F   layer. The code uses the flux corrected transport method with Boris–Book’s flux limiter for the spatial integration and a predictor–corrector method for the direct time integration of the continuity equation for O+O+ and the SOR (Successive-Over-Relaxation) method for electric potential equation. The code is tested with different evening eastward electric fields (or vertical drifts Vp < 30 m/s and Vp > 30 m/s) in order to study the influence of the prereversal enhancement in the zonal electric field on plasma bubble formation and development. The code also takes into account the zonal wind, the vertical electric field and the collision frequency of ions with neutrals and the amplitude of initial perturbation. The simulation shows a good agreement with the observational results of the ESF. The results of the code suggest that the instability can grow at the F layer bottomside by the Rayleigh–Taylor mechanism only when the Vp > 30 m/s. In the analyzed cases we have considered the competition of other geophysical parameters in the generation of plasma structures.  相似文献   

16.
The primary objective of the Scintillation and Tomography Receiver in Space (CITRIS) is to detect ionospheric irregularities from space at low latitude. For this purpose, the satellite receiver uses the UHF and S-Band transmissions of the ground network of Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) beacons. CITRIS, developed at the Naval Research Laboratory, differs from the normal DORIS receiver by being able to capture and store the complex amplitude of the 401.25 and 2036.25 MHz transmissions at 200 Hz sample rate. Ground processing of the CITRIS data yields total electron content (TEC) and both phase and amplitude scintillations. With CITRIS flying on the US Space Test Program (STP) satellite STPSat1, 2 years of data were collected and processed to determine the fluctuations in ionospheric TEC and radio scintillations associated with equatorial irregularities. CITRIS flights over DORIS transmitters yield direct measurements of the horizontal plasma density fluctuations associated with equatorial plasma bubbles. Future flights of CITRIS can provide valuable complements to other satellite instruments such as GPS occultation receivers used to estimate vertical electron density profiles in the ionosphere.  相似文献   

17.
The performance of the International Reference Ionosphere (IRI) in predicting the height of the maximum of electron density (hmF2) has been evaluated for similar geomagnetic latitudes stations in the northern hemisphere (NH) and southern hemisphere (SH), and for the last two minima. As truth-sites, the digisonde stations of Millstone Hill (42.6°N, 288.5°E), USA, and Grahamstown (33.3°S, 26.5°E), South Africa, were considered. A monthly averaged diurnal variation was obtained from all the observations and model output in the months studied, and the corresponding difference was also calculated. For this initial study data from summer and winter in the NH and SH were selected for the solstice comparison, and October data for both stations were used to represent equinox conditions. The choice of these periods depended on data availability and quality. The results show that for the earlier minimum in 1996, in general IRI hmF2 values are in reasonable agreement with the observations. The exceptions are October and December in the SH, where IRI hmF2 tends to high, particularly on the dayside, and also July for which the daytime measured values tend to be larger than the IRI ones. For the recent minimum in 2008, IRI tends to over-estimate the hmF2 in most of the observations. The results support the general assertion that thermospheric temperatures were cooler during the last solar minimum as a consequence of an unusually low, and extended, minimum in solar extreme-ultraviolet flux, and in response to continually increasing long-term trend in anthropogenic carbon dioxide. The cooler temperatures not only decrease density at a fixed height, but also make the corresponding contraction of the atmosphere lower the height of the F-region peak.  相似文献   

18.
In this study we have used VHF and GPS-SCINDA receivers located at Nairobi (36.8°E, 1.3°S, dip −24.1°) in Kenya, to investigate the ionospheric scintillation and zonal drift irregularities of a few hundred meter-scale irregularities associated with equatorial plasma density bubbles for the period 2011. From simultaneous observations of amplitude scintillation at VHF and L-band frequencies, it is evident that the scintillation activity is higher during the post sunset hours of the equinoctial months than at the solstice. While it is noted that there is practically no signatures of the L-band scintillation in solstice months (June, July, December, January) and after midnight, VHF scintillation does occur in the solstice months and show post midnight activity through all the seasons. VHF scintillation is characterized by long duration of activity and slow fading that lasts till early morning hours (05:00 LT). Equinoctial asymmetry in scintillation occurs with higher occurrence in March–April than in September–October. The occurrence of post midnight VHF scintillation in this region is unusual and suggests some mechanisms for the formation of scintillation structure that might not be clearly understood. Zonal drift velocities of irregularities were measured using cross-correlation analysis with time series of the VHF scintillation structure from two closely spaced antennas. Statistical analyses of the distribution of zonal drift velocities after sunset hours indicate that the range of the velocities is 30–160 m/s. This is the first analysis of the zonal plasma drift velocity over this region. Based on these results we suggest that the east–west component of the plasma drift velocity may be related to the evolution of plasma bubble irregularities caused by the prereversal enhancement of the eastward electric fields. The equinoctial asymmetry of the drift velocities and scintillation could be attributed to the asymmetry of neutral winds in the thermosphere that drives the eastward electric fields.  相似文献   

19.
The Trigger experiment was designed to test the response of the auroral ionosphere to an impulsive release of a hot, dense plasma. It consisted of a sounding rocket payload divided into two parts, an instrumented diagnostic section and a cesium doped high explosive canister. When the two sections were separated by about 1 km, but close to the same magnetic field line, the cesium high explosive was ignited and the plasma around the payload was observed to increase briefly by a factor of 4 in density and a factor of 2 in temperature.A variety of particle and field phenomena occurred in rapid succession after the cesium release. A drastic increase in the field aligned charged particle flux was observed over the approximate energy range 10 eV to more than 300 keV, starting about 150 ms after the release and lasting about 1 second. There is also evidence of a second particle burst, starting one second after the release and lasting for tens of seconds. A transient electric field pulse of 200 mV/m appeared just before the particle flux increase began. Additional effects include electrostatic waves associated with the cesium cloud boundary. The field aligned currents associated with the electric field pulse and cloud conductivity gradient may be responsible for the observed electron acceleration in a manner similar to the electrodynamic origin of auroral arcs.  相似文献   

20.
In this investigation, we present and discuss the response of the ionospheric F-region in the South American and East Asian sectors during an intense geomagnetic storm in August 2005. The geomagnetic storm studied reached a minimum Dst of −216 nT at 12:00 UT on 24 August. In this work ionospheric sounding data obtained of 24, 25, and 26 August 2005 at Palmas (PAL; 10.2° S, 48.2° W; dip latitude 6.6° S), São José dos Campos (SJC, 23.2° S, 45.9° W; dip latitude 17.6° S), Brazil, Ho Chi Minh City, (HCM; 10.5° N, 106.3° E; dip latitude 2.9° N), Vietnam, Okinawa (OKI; 26.3° N, 127.8° E; dip latitude 21.2° N), Japan, are presented. Also, the GPS observations obtained at different stations in the equatorial and low-latitude regions in the Brazilian sector are presented. On the night of 24–25 August 2005, the h′F variations show traveling ionospheric disturbances associated with Joule heating in the auroral zone from SJC to PAL. The foF2 variations show a positive storm phase on the night of 24–25 August at PAL and SJC during the recovery phase. Also, the GPS-VTEC observations at several stations in the Brazilian sector show a fairly similar positive storm phase on 24 August. During the fast decrease of Dst (between 10:00 and 11:00 UT) on 24 August, there is a prompt penetration of electric field of magnetospheric origin that result in abrupt increase (∼12:00 UT) in foF2 at PAL, SJC (Brazil) and OKI (Japan) and in VTEC at IMPZ, BOMJ, PARA and SMAR (Brazil). OKI showed strong oscillations of the F-region on the night 24 August resulted to the propagation of traveling atmospheric disturbances (TADs) by Joule heating in the auroral region. These effects result a strong positive observed at OKI station. During the daytime on 25 August, in the recovery phase, the foF2 observations showed positive ionospheric storm at HCM station. Some differences in the latitudinal response of the F-region is also observed in the South American and East Asian sectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号