首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
磁层顶低混杂漂移不稳定性的理论和观测使我们可以提出一个新的磁层对流驱动模式,为了解释磁层对流的形成、磁层顶厚度等一系列磁层现象,已经提出了三种磁层模式,Dunge提出互联模式,认为行星际磁场磁力线与地磁场磁力线在磁层顶前部相互联接起来,磁层顶为一旋转间断面,太阳风粒子可直接通过磁层顶进入磁层内,虽然这一  相似文献   

2.
磁层顶通量传输事件(Flux Transfer Event,FTE)与磁重联相关,其典型特征为磁场法向分量的双极变化.在不同FTE模型里,FTE结构可能为重联的通量管、由多X线重联形成的闭合磁通量绳或者由单X线重联形成的开放磁场环,从而在磁层顶有不同的整体位形.使用一种新的轴向分析方法,对Cluster在一个向阳面磁层顶穿越季观测到的505个FTE进行统计研究.结果表明:在磁层顶中低纬度的侧翼,大多数FTE轴向均为沿磁层磁力线方向即南北方向,少数FTE轴向沿着不同于磁层磁力线方向的东西方向;在高纬磁层顶,大多数FTE轴向沿东西方向,少数FTE轴向沿着磁层磁力线方向即南北方向.这些统计特征有助于重新认识FTE的全球形态.   相似文献   

3.
1994年2月21日行星际激波引起的磁暴   总被引:2,自引:0,他引:2  
利用Imp-8,Geotail和Goes-6等卫星资料,研究了1994年2月21日0900UT到达地球磁层的行星际激波引起的磁暴期间,从太阳风向磁层传输能量的有关问题.结果指出:(1)南向行星际磁场(IMF)的长持续时间不是太阳风向磁层输能的必要条件.南北振荡的,较强IMF也能产生显著的能量传输;(2)行星际扰动磁场通过弓激波和磁层顶后扰动磁能增加,增幅将近5倍;(3)在磁层内扰动磁场的Bz分量在1×10-4Hz附近显著被吸收.这一低频扰动磁场可能是磁暴期间导致氧离子和质子等环电流粒子向内扩散并被加速的原因之一.  相似文献   

4.
三维试验粒子轨道法在磁层粒子全球输运中的应用   总被引:1,自引:1,他引:0  
根据磁层粒子动力学理论, 通过偶极磁场模型验证利用三维试验粒子轨道方法模拟近地球区(r < 8Re)带电粒子运动特征的可靠性. 在此基础上, 以太阳风和磁层相互作用的全球MHD模拟结果为背景, 利用三维试验粒子轨道方法, 对非磁暴期间南向行星际磁场背景下太阳风离子注入磁层的情形进行数值模拟, 并对北向行星际磁场背景下太阳风离子注入极尖区以及内磁层的几种不同情形进行了单粒子模拟. 模拟结果反映了南向和北向行星际磁场离子向磁层的几种典型输入过程, 揭示出行星际磁场南向时太阳风粒子在磁层内密度分布的晨昏不对称性以及其在磁鞘和磁层内的大致分布, 并得出统计规律. 模拟结果与理论预测和观测结论相一致, 且通过数值模拟发现, 行星际磁场北向时靠近极尖区附近形成的非典型磁镜结构对于能量粒子经由极尖区注入环电流区域过程有重要的影响和作用.   相似文献   

5.
几种材料的磁层亚暴环模试验   总被引:1,自引:0,他引:1  
<正> 一、引言星际空间存在运动着的带电粒子。当太阳风粒子到达地球磁层顶且随着太阳风粒子而来的星际磁场,指向地磁南极时,太阳风中的感应电流产生的附加场使地磁场发生畸变。迎着太阳的一面较为扁平,而背着太阳的一面形成一个很长的磁尾。在磁尾区,太阳风粒子的注入(它们的能量为几十电子伏到几千电子伏)引起了高能粒子的大量增加。这些高能粒子在  相似文献   

6.
基于嫦娥一号高能粒子数据的地球磁层屏蔽效应研究   总被引:1,自引:0,他引:1  
月球绕地球运行轨道约有1/4位于地球磁层内,因此,地球磁层是否会为月球轨道附近高能粒子提供足够的磁场屏蔽对于探索月球活动具有重要影响.嫦娥一号是中国首颗绕月人造卫星,其绕月飞行的工作轨道距离月球表面200 km.通过对嫦娥一号高能粒子探测器(HPD)的探测数据进行分析,比较了当月球位于地球磁层内外6个不同能道(能量范围4~400 MeV)时质子通量的变化,发现当月球位于地球磁层内时,这些能道的质子通量并没有发生显著减少,结果表明地球磁层不能为月球轨道附近高能粒子提供显著的磁屏蔽.  相似文献   

7.
磁层顶磁场重联是太阳风向磁层输入能量的主要方式.重联如何触发一直是空间物理研究的难点,其机制仍然有待深入研究.由于卫星穿越磁层顶时,很难恰好穿越重联发生的区域,因此难以观测到重联的触发条件.本文利用THEMIS卫星观测,确立了反演磁层顶重联点的方法.当重联刚开始发生时,卫星能够观测到离子的能量色散特征,可利用其计算卫星到重联发生位置的距离.沿着磁力线模型追踪该距离即可反演出磁层顶发生重联的位置.与其他方法进行了对比分析,结果显示本文方法比其他方法具有更高的精度.   相似文献   

8.
基于磁层粒子动力学理论,首先对比了计算漂移壳分离的引导中心法和磁力线追踪法,计算表明两种方法的计算结果一致.然后分别采用T89c和T96磁层磁场模式,用磁力线追踪法数值计算了不同初始位置(≤9Re)、不同初始投掷角、不同Kp指数和不同太阳风压力下,带电粒子的漂移壳分离.计算结果揭示了漂移壳分离随初始位置、投掷角、Kp指数和太阳风压力的变化.其具体特征如下. (1)随着径向距离的增大,漂移壳分离效应愈加显著,由正午出发的粒子将被稳定捕获,而午夜出发的径向距离≥7Re的部分大投掷角粒子将沿磁层顶逃逸. (2)正午出发的粒子,漂移到午夜时其漂移壳随投掷角减小向外排列;午夜出发的粒子,漂移到正午时其漂移壳随投掷角增大排列; 90°投掷角粒子在磁赤道面的漂移壳沿着磁场等值线排列. (3)漂移壳分离随Kp指数和太阳风压力增大变得显著,且随这两种扰动参数的变化特征和趋势是基本相似的.   相似文献   

9.
地球磁尾的电场模式   总被引:1,自引:0,他引:1  
地球磁层中的电场是磁层等离子体运动的主要驱动力。目前常用的磁层电场为均匀晨昏电场和投影电场。本文假定磁力线为电场的等位线,地球电离层电场看做磁层电场沿磁力线在电离层的投影。利用Tsyganenko磁场模式(T89),沿磁力线反电离层电场投影到磁尾,得到了一个新的磁层电场模式。文中对偶极磁场和T89磁场模式下的投影场作了比较,说明本模式突破了偶极磁场的局限,在磁层有更大的适用范围。  相似文献   

10.
磁层中的超低频(ULF)波动在太阳风和磁层之间的能量输运过程中具有重要作用.ULF波动主要发生在内磁层,且内磁层中ULF波动影响粒子的加速及沉降,而在夜侧磁层尤其是磁尾等离子片中观测到的ULF波动比较少.基于中国自主磁层探测卫星TC-1的观测数据,发现了两例行星际激波导致的磁尾中心等离子片中ULF波动事件,并发现这两例ULF事例都包含很强的环向模驻波分量,与以往THEMIS卫星报道的同类事件观测特征相符.根据ULF波的观测特征,分析了这两例ULF波动的可能触发机制.研究结果有助于深入理解磁层对行星际激波的全球响应.   相似文献   

11.
The propagation of energetic protons (35–1600 keV) from the Earth's magnetosphere to the ISEE-3 spacecraft located about 240 earth radii (RE) upstream in the solar wind is used as a tool to study the interaction between these protons and the solar wind. In this preliminary study we present proton pitch angle distributions seen at different times during the development of upstream events that occur in relatively quiet interplanetary conditions. In general a highly anisotropic sunward flow is seen at the beginning of the events. During the course of the events pitch angle distributions may vary between streaming along the field lines (peaked around 0° pitch angle), a uniform intensity between 0° and 90°, and a peaked distribution around a preferred pitch angle that is often near 90°.  相似文献   

12.
The effect of gravity on super-escape particles spiralling along magnetic field lines need not be negligible when the field lines are long enough and the field-strength variation small. If the magnetic field strength decreases with altitude but only very slowly, some unexpected phenomena may occur owing to gravity: some super-high-velocity particles can possess an upper level of reflection which impedes their escape into higher regions. Some of these “super-escape particles may, however, propagate through the level at which their pitch angle is 90° and continue spiralling in the same direction (“hole” boundary). In addition, the pitch angle of some super-escape particles may only achieve a maximum which can be very small (hole effect). Many plasma phenomena can be derived from these charecteristic features of particle trajectories.  相似文献   

13.
Solar energetic particles (SEPs) constitute a distinct population of energetic charged particles, which can be often observed in the near Earth space. SEP penetration into the Earth’s magnetosphere is a complicated process depending on particle magnetic rigidity and geomagnetic field structure. Particles in the several MeV energy range can only access to periphery of the magnetosphere and the polar cap regions, while the GeV particles can arrive at equatorial latitudes. Solar protons with energies higher than 100 MeV may be observed in the atmosphere above ∼30 km, and those with energies more than 1 GeV may be recorded even at the sea level. There are some observational evidences of SEP influence on atmospheric processes. Intruding into the atmosphere, SEPs affect middle atmosphere odd-nitrogen and ozone chemistry. Since spatial and temporal variations of SEP fluxes in the near Earth space are controlled by solar activity, SEPs may present an important link between solar activity and climate. The paper outlines dynamics of SEP fluxes in the near Earth space during the last decades. This can be useful for tracing relationship between SEPs and atmospheric processes.  相似文献   

14.
Historically, solar energetic particle (SEP) events are classified in two classes as “impulsive” and “gradual”. Whether there is a clear distinction between the two classes is still a matter of debate, but it is now commonly accepted that in large “gradual” SEP events, Fermi acceleration, also known as diffusive shock acceleration, is the underlying acceleration mechanism. At shock waves driven by coronal mass ejections (CMEs), particles are accelerated diffusively at the shock and often reach > MeV energies (and perhaps up to GeV energies). As a CME-driven shock propagates, expands and weakens, the accelerated particles can escape ahead of the shock into the interplanetary medium. These escaping energized particles then propagate along the interplanetary magnetic field, experiencing only weak scattering from fluctuations in the interplanetary magnetic field (IMF). In this paper, we use a Monte-Carlo approach to study the transport of energetic particles escaping from a CME-driven shock. We present particle spectra observed at 1 AU. We also discuss the particle “crossing number” at 1AU and its implication to particle anisotropy. Based on previous models of particle acceleration at CME-driven shocks, our simulation allows us to investigate various characteristics of energetic particles arriving at various distances from the sun. This provides us an excellent basis for understanding the observations of high-energy particles made at 1 AU by ACE and WIND.  相似文献   

15.
By use of the global PPMLR Magnetohydrodynamics (MHD) model, a serial of quasisteady- state numerical simulations were conducted to examine the modulation property of the interplanetary magnetic field clock angle θ on the solar wind energy input into the magnetosphere. All the simulations can be divided into seven groups according to different criteria of solar wind conditions. For each group, 37 numerical examples are analyzed, with the clock angle varying from 0° to 360° with an interval of 10°, keeping the other solar wind parameters (such as the solar wind number density, velocity, and the magnetic field magnitude) unchanged. As expected, the solar wind energy input into the magnetosphere is modulated by the IMF clock angle. The axisymmetrical bell-shaped curve peaks at the clock angle of 180°. However, the modulation effect remains invariant with varying other solar wind conditions. The function form of such an invariant modulation is found to be sin(θ/2)2.70 + 0.25.   相似文献   

16.
行星际起伏向磁层顶的输运   总被引:1,自引:1,他引:0  
时间尺度为分钟数量级的太阳风速度和行星际磁场大幅度扰动实际上始终存在于行星际空间的。这些扰动一直传输到紧贴磁层边界面外侧的区域。它们在磁鞘等离子体和磁层顶的相互作用过程中可能起很重要的作用。行星际起伏中的磁场分量在通过地球弓激波时首先经历一次跳跃,然后一部分扰动被带到磁层边界面处。在边界面附近磁场扰动幅度被大大地放大了。弓激波上游的太阳风条件控制了放大因子。本文所作的数值模拟研究结果表明,如果上游有大幅度的扰动,在边界面附近就有大幅度的Alfven起伏的磁场分量。当上游磁场接近垂直于日地联线时,放大因子变得相当大,而且放大因子随上游的等离子体β值和/或Alfven马赫数的增加而增加。上游各向异性对放大因子的影响不大。在磁层边界附近存在大幅度起伏表明这里不存在稳定的片流。   相似文献   

17.
The earth's magnetosphere absorbs only a minor fraction (≈ 10?3) of the incident solar wind energy. Variations of the solar wind can often cause lively reactions in the earth's close environment. However, the physical mechanisms involved are not yet understood. It appears now that the combined action of the solar wind momentum flux, the direction of the interplanetary magnetic field as well as its fluctuations might play the dominant role. The behaviour of these parameters is governed in some characteristic way by the solar wind stream structure which reflects the condition of the solar corona and its magnetic field topology. Transients in the sun's atmosphere associated with solar activity cause reactions in the interplanetary medium which also show some typical, though very different, signatures. Taking into account the interdependence of the solar wind parameters in context with the underlying solar phenomena, we may be able to pinpoint the mechanism which controls the action of the solar wind on the magnetosphere.  相似文献   

18.
This paper is devoted to the study of propagation of disturbances caused by interplanetary shocks (IPS) through the Earth’s magnetosphere. Using simultaneous observations of various fast forward shocks by different satellites in the solar wind, magnetosheath and magnetosphere from 1995 till 2002, we traced the interplanetary shocks into the Earth’s magnetosphere, we calculated the velocity of their propagation into the Earth’s magnetosphere and analyzed fronts of the disturbances. From the onset of disturbances at different satellites in the magnetosphere we obtained speed values ranging from 500 to 1300 km/s in the direction along the IP shock normal, that is in a general agreement with results of previous numerical MHD simulations. The paper discusses in detail a sequence of two events on November 9th, 2002. For the two cases we estimated the propagation speed of the IP shock caused disturbance between the dayside and nightside magnetosphere to be 590 km/s and 714–741 km/s, respectively. We partially attributed this increase to higher Alfven speed in the outer magnetosphere due to the compression of the magnetosphere as a consequence of the first event, and partially to the faster and stronger driving interplanetary shock. High-time resolution GOES magnetic field data revealed a complex structure of the compressional wave fronts at the dayside geosynchronous orbit during these events, with initial very steep parts (10 s). We discuss a few possible mechanisms of such steep front formation in the paper.  相似文献   

19.
For about the last 40 years, we have been trying to understand the propagation of cosmic rays and other energetic charged particles through the interplanetary medium. Identification of the basic processes affecting the propagation, namely diffusion, convection by the solar wind, adiabatic deceleration, and gradient and curvature drifts, was attained early on, but reaching detailed physical understanding, particularly of the roles of diffusion and gradient and curvature drifts, continues as an active topic of research to this day. Particularly unclear is the nature of the cross-field propagation. Many observations seem to require more efficient cross-field propagation than theoretical propagation models can easily produce. At the same time, there are other observations that seem to show strong guidance of the particles by the interplanetary magnetic field. With current measurements from spacecraft near Earth and from the Ulysses spacecraft, which samples nearly the complete range of heliographic latitudes in the inner heliosphere, critical tests of the ways in which cosmic rays and other energetic charged particles propagate through the interplanetary medium are possible. I briefly review the status of observations that are relevant to the characterization of diffusive propagation in the inner heliosphere and will present evidence for a possibly previously overlooked contribution from transport along magnetic flux tubes that deviate dramatically from the average interplanetary spiral configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号