首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了实现激光雷达点云与图像重建点云的三维空间配准,基于自研三维扫描激光雷达系统,提出了新型的快速多尺度因子(FMSR)点云配准算法,研究了空间点云配准技术。该算法主要包括初始配准和精确配准2个步骤:初始配准使用基于尺度自适应关键点质量(ASKQ)的点云特征提取算法,提取关键点的特征匹配对,求解点云配准初始参数;精确配准利用K-邻近(KNN)算法全局搜索,提升计算效率,多次迭代得到2组点云之间的最优旋转矩阵、最优平移向量和最优尺度因子。仿真和实验结果表明,所提出的算法对空间目标(尺寸为20.30 m×7.85 m×26.56 m)实现空间点云配准,配准精度达到0.194 m,运行时间为16.207 s;与多尺度迭代最近点(S-ICP)算法相比,配准精度提高了0.131 m,运行时间提高了30%。所提出的空间点云配准技术可为场景重建和纹理匹配提供算法基础。   相似文献   

2.
基于点云的空间非合作目标位姿估计,常受到噪声影响.提出截断最小二乘估计与半定松弛(truncated least squares estimation and semidefinite relaxation, TEASER)与迭代最近点(iterative closest point, ICP)的结合算法,提升空间非合作目标位姿估计精度与鲁棒性.该方法包括粗配准与精配准两个环节:在粗配准环节中,基于局部点云与模型点云的方向直方图特征(signature of histogram of orientation, SHOT)确定匹配对,利用TEASER算法求解初始位姿;在精配准环节中,可结合ICP算法优化位姿估计结果.北斗卫星仿真实验表明:在连续帧位姿估计中,噪声标准差为3倍点云分辨率时,基于TEASER的周期关键帧配准方法的平移误差小于3.33 cm,旋转误差小于2.18°;与传统ICP方法相比,平均平移误差与平均旋转误差均有所降低.这表明所提出的空间非合作目标位姿估计方法具有良好的精度和鲁棒性.  相似文献   

3.
点云数据配准是三维重构的关键技术之一,为了提高空间非合作目标的稀疏扫描点云数据配准的速度和精度,提出一种改进的基于四点算法的全局配准算法进行初始配准,再使用迭代最近点算法精确配准.针对直接扫描所得到点云数据量大的问题,本文提出一种基于KD Tree点云均匀采样简化算法,并且对传统基于四点算法中的阈值参数进行了统一,确定了各误差阈值参数和点云密度之间的关系.仿真结果表明,该方法能够快速、有效地实现卫星稀疏点云的配准,改进的四点算法配准耗时仅为几何哈希算法的42.49%.  相似文献   

4.
基于ICP算法的手术导航三维配准技术   总被引:1,自引:0,他引:1  
针对计算机辅助手术三维导航技术中术前CT图像与术中实际空间的配准问题,提出一种基于最近点迭代(ICP,Iterative Closest Point)算法的特征点云配准技术.利用医学图像空间和实际空间特征区域的两片点云坐标进行三维配准.对CT图像进行重建、分割及交互式操作得到医学图像特征点云;利用光学定位仪实时采集实际空间中对应区域的点云;通过主元分析(PCA,Principal Component Analysis)获取两组点云数据的特征向量进行初配准;进行最近点迭代使配准矩阵收敛到一个最优解,其中采用k-d tree寻找邻近点加速迭代过程.以塑料脊柱模型骨为对象进行了脊柱手术导航配准精度实验,进一步对实验中的点云数据加入高斯噪声以进行误差分析.结果表明这种配准方法简单可靠,在模型骨情况下配准精度在1mm以内.  相似文献   

5.
3D TOF相机具有同时获取目标的灰度和深度图像的功能,从而能够实时得到目标物体的三维点云,实现三维成像.主要介绍了3D TOF相机的工作机理以及应用场景等,同时模拟空间近距离目标探测的应用对目标进行成像研究,分析了不同条件下对目标物成像的影响因素以及相机的误差来源和误差的校正方法,并通过相机对深度信息的获取,对相机的距离探测精度进行了测试.  相似文献   

6.
为了提高相邻视角间稀疏扫描点云数据配准的速度和精度,实现多视角点云精确配准,提出一种基于KD Tree点云均匀采样简化算法,并且对传统四点算法(4 PointsCongruentSetsAlgorithm,4PCS)中的阈值参数进行了统一,确定了各误差阈值参数和点云密度之间的关系,通过基于姿态校正的方法有效解决了对称视角点云引起的误配准问题。仿真结果表明,该方法能够快速、有效地实现卫星稀疏点云的配准。  相似文献   

7.
空间探测任务中大量先验图像数据的缺乏,使得基于光学图像的态势感知和导航算法无法被有效定量测试和评估。针对此问题,提出了一种基于三维点云模型和射影变换基本理论的空间目标光学图像生成方法。在完成对空间目标三维点云模型和仿真摄像机模型构建基础之上,利用射影变换基本理论依次计算像平面所有像素点与空间目标三维点云模型空间点的对应关系,并基于Lambertian漫反射模型和相对应空间目标三维点云模型空间点的光照方向,得到所有像素点的灰度值,从而生成给定空间目标的光学图像。大量仿真实验表明:与传统的基于解析模型的仿真图像生成方法相比,所提的空间目标光学图像生成技术能够以更快的速度生成更加真实的仿真图像,且生成的仿真图像可以广泛应用于椭圆拟合、陨石坑检测、着陆器视觉导航、航天器交会对接、空间目标跟踪等典型空间应用算法的定性与定量评估。   相似文献   

8.
为了解决非合作目标的相对测量问题,提出了一种基于单目图像序列目标重构结果的非合作目标相对位姿测量方法。该方法将目标的三维重构与相机的位姿信息计算相结合,首先利用观测前期得到的图像序列,通过非线性优化算法计算得到目标上部分三维点坐标;然后基于该三维点集合,建立递推深度模型,对相机的相对位姿信息和新观测到的目标点同时进行卡尔曼滤波估计。航拍测量试验表明,随着图片数量的增多,精确重构点的比例(重投影误差小于1个像素的点)不断提高,80%的图像中精确重构点比例优于89%;基于公共数据集的试验表明,该算法对姿态估算精度可达1°以内,位置测量的精度可达到2cm以内。以上试验结果表明,该算法具有较高的测量精度。  相似文献   

9.
为实现对空间姿态翻滚航天器的在轨服务与维护以及对空间碎片的清理,需对其进行精确的相对位姿测量。针对相对位姿测量问题,提出了基于单目视觉与卡尔曼滤波的相对位姿测量方法。通过对特征点匹配算法进行调查,采用了具有尺度不变性与旋转不变性的尺度不变特征变换算法(SIFT)和加速稳健特征算法(SURF)的特征点提取方法,并对二者进行了对比,得到了二者分别适用的工况条件。通过对Kalman滤波算法进行研究,引入了相机偏置矩阵,设计了Kalman滤波器,解决了单目相机的距离模糊问题,估计得到了非合作目标的相对位姿、主惯量比以及特征点位置信息。经过仿真,姿态角度估计误差在稳定后低于0.3°,相对位置估计误差在稳定后低于0.5m,相较于真值,误差小于1.67%,主惯量比估计误差在稳定后低于0.01,特征点位置误差在稳定后低于0.005m。在引入相机偏置条件后,滤波状态变量均收敛,并得到具有足够精度的估计,成功解决了单目相机深度信息缺失问题。  相似文献   

10.
针对多传感器遥感图像的配准,提出了一种快速有效的图像配准方法.该基于分级候选点集匹配的配准算法充分利用了分级匹配和候选点集匹配方法的优点,减少了特征提取空间和搜索空间.并在同名控制点对的确定中引入距离计算,能更有效地确定同名控制点对,减少了误匹配率,增加的距离计算时间代价很小,而且不随图像大小发生变换,只与最终匹配点对数目有关.采用主观与客观判断相结合的方法进行配准评价,实验结果表明,该算法在图像存在一定背景噪声,同时具有平移、旋转的情况下,可以准确地进行配准,提高了配准速度和精度.   相似文献   

11.
为了保证待加工型面加工余量的均匀性及其相对于基准之间的位置关系,提出一种同时基于基准约束与余量约束的配准算法。所提算法在配准模型中增加基准约束与余量约束,建立在基准约束与余量约束下的配准模型,引入局部坐标系进行配准计算,并将计算结果反算至全局坐标系中。通过引入局部坐标系进行配准计算的算法,降低了测量点变换过程中测量点的运动自由度,从而降低了计算过程中变量的维度,提高了计算效率,保证了计算结果满足基准面约束与余量约束。所提算法在典型的飞机零件“襟翼滑轨”的简化模型上进行了应用验证,相关结果表明:在平面基准约束与余量约束下的配准算法,计算时间为仅在余量约束下配准算法计算时间的33.6%,配准后基准面上测量点的最大偏差小于0.04 mm,待加工面上余量的波动小于0.03 mm,适用于该类零件的自适应精加工过程。  相似文献   

12.
针对在轨非合作目标,提出一种基于序列点云的三维重构方法,实现非合作目标交会过程中的目标三维结构恢复,并将恢复的结构用于后续点云姿态的跟踪.首先分析了非合作目标三维结构先验信息未知情况下目标相对姿态增量估计过程中的漂移问题;其次,提出一种基于位姿平均的漂移修正方法,并根据修正后的目标点云位姿对点云进行融合以实现目标的三维重构;最后,使用所提出的方法对半物理仿真试验中获取的目标点云序列进行处理,结果表明该方法能够有效地对非合作目标进行三维重构和位姿跟踪.  相似文献   

13.
针对传统清晰度评价算法很难准确评价遥感卫星影像清晰度的问题,结合工程应用及遥感影像特点提出了一种新的遥感图像清晰度评价算法--自检测灰度梯度函数清晰度评价算法。把评价过程分为目标区域检测和清晰度特征参量提取,为解决遥感影像数据量大且景物密度与分布特点各异的问题,首先通过检测算子对一幅遥感影像中各区域进行检测来得到景物丰富且边缘明显的目标区域,然后再对目标区域进行灰度预处理并提取目标区域的边缘灰度梯度来评价清晰度。通过三组不同类型影像对该算法进行验证,分别为遥感相机在轨离焦仿真影像和噪声仿真影像,以及在轨型号遥感卫星影像,对比几种传统典型清晰度评价算法和自检测灰度梯度函数的评价效能,结果表明:文中方法满足遥感影像清晰度评价的基本要求,解决了传统算法无法横向比较不同遥感相机影像及不同大小影像清晰度的问题,是一种适合卫星遥感影像清晰度评价的方法。  相似文献   

14.
准确检测与打击舰船要害部位可有效提升反舰导弹毁伤效能。针对舰船要害部位检测精度低、导引误差解算精度不足等问题,提出基于深度学习的舰船要害关键点检测、轨迹预测与导引头位姿估计算法。融合深层语义信息与浅层定位信息,采用SoftPool池化保留细粒度特征,提升多角度多尺度舰船要害部位检测精度;将关键点检测结果与舰船空间结构建立映射,解算导引头三维位姿;引入长短期记忆网络挖掘要害打击点时空特征,实现多尺度舰船要害动态轨迹预测。实验结果表明:所提算法对舰船要害部位检测与轨迹预测精度高,导引头位姿估计结果较准确,满足自主突防视角反舰导弹对复杂海战场的态势感知需求。  相似文献   

15.
针对现有异步空间配准算法在目标机动时无法准确估计传感器系统误差的问题,研究了一种基于内插外推时间配准的异步传感器空间配准算法.该算法首先采用内插外推时间配准算法实现两传感器的数据同步,随后根据时间配准结果构建伪量测方程.不同于其他文献根据目标状态向量和时间差求解加权系数,从而构造与目标运动状态无关的伪量测方程的方法,该算法的伪量测方程构建过程与目标状态向量无关,且可以证明由时间配准结果构造的伪量测也与目标状态无关.因此该算法可有效解决目标机动条件下的异步传感器空间配准问题.仿真实验验证了该算法在目标作蛇形机动的条件下仍然可准确地对传感器的系统误差进行估计.  相似文献   

16.
针对麻雀搜索算法前期易陷入局部极值点、后期寻优精度不高等问题,提出一种自适应变异麻雀搜索算法(AMSSA)。先通过猫映射混沌序列初始化种群,增强初始种群的随机性、遍历性,提高算法的全局搜索能力;再引入柯西变异和Tent混沌扰动,拓展局部搜索能力,使陷入局部极值点的个体跳出限制继续搜索;最后,提出探索者-跟随者数量自适应调整策略,利用各阶段探索者和跟随者数量的改变增强算法前期的全局搜索能力和后期的局部深度挖掘能力,提高算法的寻优精度。选取16个基准函数和Wilcoxon检验进行验证,实验结果表明:所提算法与其他算法相比,寻优精度、收敛速度和稳定性都取得较大提升。  相似文献   

17.
基于几何不变性和BP网络的二维目标识别算法   总被引:2,自引:0,他引:2  
提出了一种基于几何不变性和BP网络的二维目标识别算法.该算法不仅能适应目标物体在旋转、缩放和平移变换(RST变换)下的不变性识别,而且能适应仿射及射影变换下的不变性识别.算法通过对目标物体边缘点进行规格化和对规格化后的边缘点进行5点不变量穷举计算解决了模型图像与目标图像的对应点选取问题;通过将不同观测方位和不同旋转角度的样本图像边缘点的5点不变量集合作为输入向量对BP网络进行训练解决了由于仿射和射影变换造成规格化边缘点间距变化对正确分类的影响.算法不仅能识别多边形而且能识别曲线轮廓的目标物体.   相似文献   

18.
针对小行星探测下降着陆段精确相对导航问题,提出了一种基于Stereophotoclinometry (SPC)陆标的相对导航方法.该方法先采用SPC光照模型渲染陆标的预测图像,再利用双线性插值从观测图像中生成陆标的提取图像.通过组合相关匹配实现预测图像与提取图像的高精度匹配,得到陆标中心点对应观测图像位置,即可利用N点透视(PNP)算法进行相机位姿估计.仿真结果表明,该方法在初始相机位姿偏差较大时也能达到亚像素的图像位置确定精度,并且具有较好的实时性.  相似文献   

19.
为了从单张RGB图像估计出相机的位姿信息,提出了一种深度编解码双路卷积神经网络(CNN),提升了视觉自定位的精度。首先,使用编码器从输入图像中提取高维特征;然后,使用解码器提升特征的空间分辨率;最后,通过多尺度位姿预测器输出位姿参数。由于位置和姿态的特性不同,网络从解码器开始采用双路结构,对位置和姿态分别进行处理,并且在编解码之间增加跳跃连接以保持空间信息。实验结果表明:所提网络的精度与目前同类型算法相比有明显提升,其中相机姿态角度精度有较大提升。   相似文献   

20.
针对医学图像配准问题,传统方法提出通过解决优化问题进行配准,但计算成本高、运行时间长。深度学习方法提出使用网络学习配准参数,从而进行配准并在单模态图像上取得高效性能。但在多模态图像配准时,不同模态图像的强度分布未知且复杂,大多已有方法严重依赖标签数据,现有方法不能完全解决此问题。提出一种基于无监督学习的深度多模态可变形图像配准框架。该框架由基于损失映射量的特征学习和基于最大后验概率的变形场学习组成,借助空间转换函数和可微分的互信息损失函数实现无监督训练。在MRI T1、MRI T2以及CT的3D多模态图像配准任务上,将所提方法与现有先进的多模态配准方法进行比较。此外,还在最新的COVID-19的CT数据上展示了所提方法的配准性能。大量结果表明:所提方法与其他方法相比,在配准精度上具有竞争优势,并且大大减少了计算时间。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号