首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
联翼布局俯仰力矩非线性变化特性的数值模拟   总被引:1,自引:2,他引:1  
联翼布局飞机具有优良的升阻特性,是下一代亚声速飞机优先选择的气动布局型式之一,但在某些情况下其俯仰力矩随迎角的增大会表现出较强的非线性变化特点.针对该问题,在Ma=0.75条件下,采用数值模拟方法对某亚声速联翼布局气动性能及其绕流流场进行研究,通过对各部件气动特性分析,结合不同前翼绕流流动状态下前/后翼绕流场特点及截面气动力分布特点,揭示了前翼对后翼绕流流场干扰是引起其俯仰力矩非线性变化的主要原因.计算结果表明:在一定迎角下,该联翼布局飞机前翼绕流发生分离,从而影响后翼绕流流场,引起后翼气动效率下降,导致全机俯仰力矩随飞机迎角发生非线性上扬,对该机飞行性能的提高带来严重影响.  相似文献   

2.
根据连翼布局飞行器气动力和力矩的分布特点,建立了面向其气动部件的飞行力学数学模型。将计算流体力学(CFD)和飞行力学仿真结合,采用时间步长离散,建立了一个能通过气动计算和飞行力学相互迭代来完成仿真全过程的面向连翼布局飞行器气动部件的仿真平台,并且在仿真过程中能全程监测所有部件的气动、动力学、姿态和航迹参数的变化。通过该仿真平台对不同输入信号作用下的动力学响应分析了连翼布局飞行器纵向和横侧向的动力学特性。仿真分析结果表明:该连翼布局飞行器纵向具备静稳定性,但横侧向不具备静稳定性。同时,横向和航向运动耦合明显,符合荷兰滚运动偏航及侧滑振荡明显的主要特征。所提方法可为了解连翼布局飞行器本体及飞行动力学响应特性、飞行品质和飞行安全研究等工作提供分析基础。   相似文献   

3.
由于前翼和后翼的连接关系,联结翼飞行器气动和结构特性与常规布局飞行器有所不同,相互连接的机翼形成一个复杂的过约束系统,布局参数繁多,多学科设计空间增加,分析困难。为分析不同布局参数对联结翼整体性能的影响,基于工程梁理论,对不同前后翼连接位置、前/后掠角、上/下反角、端板高度、根梢比等参数的联结翼开展气动弹性优化研究,以最小结构质量为目标,在静气动弹性与颤振等条件约束下,通过遗传算法对联结翼梁架结构翼盒剖面参数展开设计,并采用高精度计算流体力学/计算固体力学(CFD/CSD)耦合方法分析优化后的模型升阻特性。通过气动弹性优化,分别得到最佳结构性能和最佳气动性能的联结翼布局参数,结果表明:这种针对联结翼每个重要参数的最优解集可发现联结翼设计的规律,并为设计提供支撑。  相似文献   

4.
针对可重复使用运载器(RLV)方案论证和初步设计阶段对模型的需求,提出了一种RLV再入概念设计,进行了数学建模研究。RLV采用翼身组合体的气动布局,包括左右升降副翼、方向舵和机体襟翼。对其无动力再入返回姿态控制,建立了反作用控制系统/气动舵复合控制数学模型。再入过程要经历自由分子流区、稀薄大气过渡流区和连续流区,基于气动力的工程计算方法建立了这三个流区的RLV气动模型。控制特性分析与六自由度再入仿真表明,所设计的RLV控制模型具有与航天飞机轨道器一致的再入飞行特性,证明了数学建模的有效性,能够进一步用于RLV姿态控制的研究。  相似文献   

5.
    
扇翼飞行器是一种新概念新原理飞行器,尤其是其具有独特空气动力学原理。扇翼能够同时产生升力和推力,为了进一步改善扇翼的气动特性,在不改变扇翼基本几何参数的前提下,沿机身纵向布置前后2个扇翼,组成了纵列式双扇翼飞行器。通过数值模拟的方法,计算了前后扇翼间距、高度和安装角变化时的扇翼升力和推力值,分析了前后扇翼气动特性相互影响的规律。此外还设计了纵列式双扇翼的风洞试验模型,将获得的风洞试验结果与数值计算结果进行了初步的对比验证。结果表明,在一定前后扇翼间距、高度和安装角下,纵列式双扇翼的气动力相比单个扇翼更具优势。因此,纵列式双扇翼布局的飞行器具有很好的发展前景和应用优势。  相似文献   

6.
微型飞行器在军、民用领域具有广阔的应用前景,柔性翼是提升微型飞行器的气动性能的有效方法。为了更好地对柔性翼进行控制,对柔性翼变形和振动特性及其对气动力的影响进行了同步测量。研究结果表明,相比于刚性翼,柔性翼使失速迎角推迟了6°,最大升力系数提升了47.4%,升阻比提高了17.8%。柔性翼的周期性振动除了迎角0°~2°呈现大振幅、小静变形特征外,振动的振幅随着迎角增加经历无明显波峰、三波峰到单波峰的转换。升力系数最大时对应的薄膜变形、振动振幅均达到最大。此外,变形最大的弦向位置随迎角的变化决定了俯仰力矩的特性。据此提出了施加弯度和特定频率的振动激励来提升气动性能的主动控制策略。   相似文献   

7.
采用数值模拟和理论分析相结合的方法,对高空长航时(HALE)菱形连翼布局无人机(UAV)的俯仰力矩非线性特性进行了研究。研究结果显示菱形连翼布局飞机具有2个明显的俯仰力矩非线性区域并存在上仰现象。通过采用湍动能来表示后翼受前翼尾流直接扫掠而导致的流场结构改变的强度和影响范围来解释其中一个俯仰力矩非线性区域出现的原因。通过分析前后翼流场分离的特性来解释出现另一个俯仰力矩非线性区域和力矩上仰的原因。研究了总体布局参数变化对菱形连翼布局无人机俯仰力矩特性的影响,结果显示通过调整总体布局参数可以有效地缓解俯仰力矩特性曲线非线性对飞行性能带来的影响。  相似文献   

8.
面向总体性能的高速飞行器布局优化   总被引:1,自引:1,他引:0  
飞行器气动布局的选型和优化技术在总体设计中处于关键地位,在临近空间飞行的飞行器对升阻比和操控性能都提出了更高的要求。翼身组合的升力体外形由于兼顾内部装填以及升阻特性成为了目前高速飞行器主要的设计方向。以一类具有普适性的面对称升力体外形为基础,采用相关性分析手段提取出飞行器的关键几何参数,挖掘出几何参数对所关心的总体性能指标的影响度大小,并建立起基于CFD方法的气动布局优化平台,以总体性能指标为约束,优化出高升阻比外形,通过风洞试验验证了优化设计方法的有效性,为高速飞行器的气动布局工程化设计提供了有效的技术手段。   相似文献   

9.
为了探究环量控制技术在飞行控制性能方面的优势,在定常流场中对定常射流环量控制翼型的控制力矩作用机理展开了研究,采用数值仿真的方法,对比分析了单射流、双射流产生的虚拟舵面与传统舵面作用下的气动力系数的变化规律,并基于无舵面飞行器CCSCAOON对其气动力矩的控制特性进行了验证。验证结果表明:单射流作用下的虚拟舵面能够提供用于飞行器所需的滚转和俯仰力矩,且作用机理相似,控制性能优于传统舵面;无论是单射流还是双射流,在大迎角下虚拟舵面的气动控制特性较差,限制了环量控制的使用迎角;双射流较单射流而言,升阻比特性和控制力矩特性较好;双射流下的虚拟舵面通过调节下射流口动量系数,能够有效降低偏航力矩与滚转、俯仰力矩之间的耦合效应。   相似文献   

10.
利用CFD技术计算飞行器动导数   总被引:5,自引:0,他引:5  
利用非定常流场数值计算方法模拟飞行器强迫俯仰振荡仅能得到俯仰力矩系数对迎角变化率和俯仰角速度的动导数之和,而动稳定性分析需要单独的动导数数值.为解决这个问题,利用滑移网格模拟强迫振荡运动,得到俯仰力矩系数对迎角变化率和俯仰角速度的动导数之和.利用旋转参考坐标系模拟定常拉升,得到俯仰力矩系数对俯仰角速度的动导数.利用旋转参考坐标系模拟匀速滚转,得到滚转力矩系数对滚转角速度的动导数.对有翼导弹和水上飞机进行了纵向和横向动导数的计算.计算结果与试验数据、文献数据以及其他方法得到的结果具有较好的一致性,表明提出的方法可用于复杂外形飞行器动导数计算.  相似文献   

11.
针对目前环量控制技术中射流参数与迎角对翼型气动特性的影响高度耦合,对应非定常气动力模型精度较差的研究现状,基于环量控制翼型强迫俯仰振动数值模拟数据,借助Kriging模型实现环量控制翼型的定常气动力插值,借助微分方程模型完成了适用于环量控制翼型的线性微分方程建模,采用两步线性回归参数辨识方法辨识线性微分方程模型中特征时间常数等参数,对高动量系数大振幅流动状态下的非线性影响进行修正。研究结果表明:基于Kriging模型实现的环量控制翼型定常气动力插值精度较传统气动导数模型高,建立的环量控制翼型非定常气动力模型能够精确预测不同流动状态下的气动力和力矩系数变化情况。   相似文献   

12.
俯仰阻尼导数分量的CFD数值模拟   总被引:3,自引:0,他引:3  
提出一种直接求解直接阻尼导数的方法,该方法不仅适用于轴对称外形,也适用于非轴对称外形.数值模拟飞行器的非定常强迫沉浮运动和强迫角振动,并在Etkin的非定常气动力模型基础上,辨识得到飞行器的洗流时差导数和俯仰阻尼导数,研究飞行器俯仰通道各阻尼导数的数值计算方法.对弹道外形和基本带翼导弹标模外形及Hyflex升力体外形进行研究分析表明,将阻尼导数分量相加得到的俯仰阻尼导数与直接求解强迫角振动得到的俯仰阻尼导数与试验结果吻合很好,各阻尼导数分量随质心位置的变化趋势也与理论预测相符.对于带翼飞行器,超声速条件下,洗流时差导数在俯仰阻尼导数中占主导作用.   相似文献   

13.
采用数值模拟方法研究鸭式旋翼/机翼(CRW,Canard Rotor/Wing)飞行器在转换过程末段,旋翼转速极低时全机气动特性变化规律及其产生原因.给出了旋翼旋转一周时,全机气动力、气动力矩、焦点位置变化规律,对此布局形式,转换过程末段全机升力、阻力变化幅度可达10.7%,3.7%,焦点可移动0.6 m.研究显示:旋翼处于前后不对称流场及旋翼处于不同方位角时对机体的不对称干扰是气动力与气动力矩变化原因,旋翼与平尾升力线斜率变化、旋翼自身焦点位置变化导致了全机焦点移动.   相似文献   

14.
气动布局的多目标优化是飞行器设计中的关键技术。提出一种新的高超声速再入飞行器气动外形参数的多目标优化方法,证明外形优化对高超声速流下飞行器性能的影响。通过实例仿真对飞行器所受阻力和升力对制导性能影响进行详细验证分析,将飞行器落点圆概率偏差、末速大于500 m/s的占比、最大飞行过载小于60g的占比这3个性能指标作为优化目标,将升力特性作为中间参数,将气动布局优化问题分解为2个子问题,通过基于搜索算法的升力特性优化和基于改进的模拟退火算法的外形参数优化,减少优化计算时间、提升计算效率、实现对飞行器主体和襟翼的气动布局优化、获得高超声速流下的最佳飞行器外形。仿真结果表明:在确定的约束条件下,优化算法增加了飞行器在超音速流下的气动升力,有效提高了升阻比。在不影响最大飞行过载的前提下,优化后的飞行器表现出更高的气动性能,显著提升了命中精度,同时末速也满足指标要求,制导系统性能得到有效改善。  相似文献   

15.
某无人机气动估算与风洞试验   总被引:4,自引:1,他引:4  
基于气动估算和风洞试验相结合的方法,研究某型无人机的气动特性.通过不同V形尾翼纵向力矩对比试验,发现尾翼上反角对纵向力矩特性影响较大,并分析了纵向力矩曲线上翘的原因.进行飞机部件及全机气动性能对比试验,给出V形尾翼无人机气动估算方法,找出计算与试验结果产生差别的原因,通过调整尾翼安装角,优化了无人机的气动特性.同时风洞试验也证明所采用的气动估算方法是可信的,可用于此类布局无人机的气动计算.  相似文献   

16.
摘要: 对于轨道再入飞行器,根据各阶段飞行特性和任务的不同被分为初期再入、末端能量管理以及进场着陆几个阶段.本文提出一种末端能量管理段航程及纵向剖面优选方法,通过对不同的初始航程和纵向剖面进行递推,以阻力板控制裕度最大为优化目标,选出最适应飞行器升阻特性的航程以及相应的高度动压剖面.考虑初始状态误差及气动特性偏差条件下的六自由度仿真验证所设计的纵向剖面的鲁棒性.  相似文献   

17.
双三角翼飞机气动力工程计算研究   总被引:5,自引:1,他引:4  
 双三角机翼比三角机翼气动布局具有更优越的升阻特性.飞机空气动力的工程计算是用数值方法寻求飞机最优设计方案的基础.采用基于面积比思想的半经验工程算法计算了双三角翼飞机的升力系数曲线斜率、零升阻力系数和诱导阻力因子.结果经风洞试验数据校验,精度完全能满足飞机方案设计要求.算法在某改型飞机方案设计中得到了成功的应用.  相似文献   

18.
栅格翼和机身组合体的气动特性计算与分析   总被引:1,自引:0,他引:1  
给出计算栅格翼和机身组合体亚超音速气动力干扰理论方法.亚音速采用涡格法计算栅格翼气动力,用一个二维偶极子和圆柱映像涡系模拟机身的上洗流场和栅格翼迁移到机身上气动载荷.超音速假定栅格翼处在机身横向流动的上洗流场中,用翼片理论计算机身对栅格翼气动力干扰的修正因子.用本文方法计算了几个栅格翼和机身组合体的气动特性的到了比较满意的结果.   相似文献   

19.
火星大气与地球大气截然不同,飞行器在进入火星时气动特性不同于地球再入. 大气模型的差异主要表现为气体组份、密度和温度等物理参数. 针对火星进入器MSL在进入-下降-着陆过程中的高超声速进入段,利用三维并行程序求解耦合真实气体模型的流体动力学Navier-Stokes方程,分析MSL进入火星大气时大气模型参数对进入器气动特性的影响. 结果表明,通过与海盗号飞行数据的对比,验证了所采用的火星气体模型和计算方法,且其与NASA的 LAURA代码气动特性计算结果也较为一致;大气模型气体性质,即CO2环境对进入器阻力系数和俯仰力矩系数影响较大,利用空气得到的计算和实验数据必须考虑CO2效应;密度增大促进了化学非平衡效应,但对进入器气动特性基本没有影响;温度升高大大增强了化学非平衡效应,而对进入器气动特性影响较小.   相似文献   

20.
近年来多旋翼无人飞行器(UAV)成为了小型无人飞行器发展的热门领域,而学界对于多旋翼飞行器飞行力学建模与飞行力学特性分析的研究还相对较少。针对相关研究需求,基于传统旋翼模型,建立了适用于多旋翼无人飞行器的飞行力学模型,并利用此模型对多旋翼无人飞行器悬停模态特性进行了初步分析,结果显示多旋翼飞行器模态稳定性明显弱于传统直升机,且横向Phugoid模态取代了荷兰滚模态。随后利用弱耦合系统理论与纵向模态简化模型,对多旋翼建模过程中的旋翼旋转自由度(DOF)动态特性、入流模型和旋翼气动力矩的建模必要性进行了研究。分析表明,旋翼旋转自由度的动态特性在飞控增稳条件下对全机特性有着重要影响,入流分布对刚性旋翼的俯仰、滚转气动力矩有着决定性作用,而旋翼气动力矩是决定多旋翼悬停模态的重要因素,这三者在多旋翼建模分析中不能忽略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号