首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Changes of cortical microtubules (MTs) from the normal transverse arrangement were observed in epidermal cells of Beta vulgaris roots under clinorotation. We hypothesize that the epidermis is sensitive to clinorotation and that the microtubular cytoskeleton plays a key role in the ensuing growth response.  相似文献   

2.
Gravitropic curvature growth of Arabidopsis hypocotyls mainly occurred in the rapid growing Elongation Zone (EZI), not in the slow-growing Elongation Zone (EZⅡ). By examining reorientation of Microtubules (MT) and phenotype of the cell wall in the EZI and the EZⅡ of Arabidopsis hypocotyls under normal gravitational condition, it is found that MTs in the rapid growing epidermal cells were mainly in the transverse direction, while those in the non-growing epidermal cells were in the longitudinal directions. However, this difference in cortical MT arrays between the EZI and EZⅡ cells disappeared when the seedlings were exposed to the simulated microgravity condition on a horizontal clinostat. Field emission scanning electron microscopy revealed that the surface texture of epidermal cells, like the direction of the MT, in the EZI and the EZⅡ also became similar when exposed to the simulated microgravity condition. This result indicated that simulate microgravity could modify the potential differentiation between the EZI and the EZⅡ by affecting the orientation of cortical MT in the epidermal cells.   相似文献   

3.
We examined whether sedimentable amyloplasts act as statolith in the perception of gravity in woody stems using the elongated internodes of Japanese cherry (Prunus jamasakura Sieb. ex Koidz.). In the internode of the seedlings grown on earth, amyloplasts were found sedimented at the distal end of each cell of the endodermal starch sheath tissue. In the internode grown on three-dimensional (3-D) clinostat, amyloplasts were dispersed throughout the cell matrix in the endodermal starch sheath tissue. After changing the positions of the internode from vertical to horizontal, re-sedimentation of amyloplasts toward the direction of gravity was completed in 1h, whereas the bending of the internode was observed after 12 days. We propose that sedimentable amyloplasts in the endodermal starch sheath cells may play a role in gravity perception leading to secondary xylem formation in the secondary thickening growth and eccentric growth in gravi-bending of tree stems.  相似文献   

4.
Ontogeny of plants under various gravity condition.   总被引:2,自引:0,他引:2  
The results of experiments performed under conditions of microgravity (MG) or under its simulation on the horizontal clinostat (HC) with the callus, seedlings of various species and embryogenic structures have revealed a definite role of gravity as an ecological factor in the processes of cytomorphogenesis, growth, and development. The transformation of differentiated somatic cells of arabidopsis seed into undifferentiated callus was not inhibited under MG, though modifications of the whole callus morphology and of mean cell and nucleus size were observed. The morphogenesis of polar structures such as root-hair bearing cells of Lactuca primary root has been shown to be modified in the course of differentiation under mass acceleration diminished below 0.1 g. Seed germination and seedling morphogenesis under MG follow their normal course, but a significant stimulation of shoot growth with no effect on primary root growth has been determined. A successful in vitro regeneration of Nicotiana tabacum plantlets from leaf cells and subsequent formation of shoots and roots on a continuously rotating HC as well as the formation of viable seeds during seed-to-seed growth of Arabidopsis plants under MG have indicated that gravity plays but a limited role in the processes of embryogenesis and organogenesis.  相似文献   

5.
In Zea mays L., changes in orientation of stems are perceived by the pulvinal tissue, which responds to the stimulus by differential growth resulting in upward bending of the stem. Gravity is perceived in the bundle sheath cells, which contain amyloplasts that sediment to the new cell base when a change in the gravity vector occurs. The mechanism by which the mechanical signal is transduced into a physiological response is so far unknown for any gravity perceiving tissue. It is hypothesized that this involves interactions of amyloplasts with the plasma membrane and/or ER via cytoskeletal elements. To gain further insights into this process we monitored amyloplast movements in response to gravistimulation. In a pharmacological approach we investigated how the dynamics of plastid sedimentation are affected by actin and microtubule (MT) disrupting drugs. Dark grown caulonemal filaments of the moss Physcomitrella patens respond to gravity vector changes with a reorientation of tip growth away from the gravity vector. MT distributions in tip cells were monitored over time and MTs were seen to accumulate preferentially on the lower flank of the tip 30 min after a 90 degree turn. Using a self-referencing Ca2+ selective ion probe, we found that growing caulonemal filaments exhibit a Ca2+ influx at the apical dome, similar to that reported previously for other tip growing cells. However, in gravistimulated Physcomitrella filaments the region of Ca2+ influx is not confined to the apex, but extends about 60 micrometers along the upper side of the filament. Our results indicate an asymmetry in the Ca2+ flux pattern between the upper and side of the filament suggesting differential activation of Ca2+ permeable channels at the plasma membrane.  相似文献   

6.
Key role in cell gravisensing is attributed to the actin cytoskeleton which acts as a mediator in signaling reactions, including graviperception. Despite of increased attention to the actin cytoskeleton, major gaps in our understanding of its functioning in plant gravisensing still remain. To fill these gaps, we propose a novel approach focused on the investigation of actin involvement in the development of columella cells and cells in the transition zone of roots submitted to clinorotation. Both statocytes and cells in the transition zone represent the postmitotic cells which take origin in root meristems and are specified into graviperceptive (root cap) and gravireacting (transition zone) root tissues. The aim of the research was to investigate and compare the microfilament arrangements in root cap statocytes and peripheral root tissues (epidermis and cortex cells) in the transition zone and to find out how the actin cytoskeleton is involved in their specification under clinostat conditions. So far, our experiments have shown that under clinorotation the cytoplasmic microfilament network in the cortex cells in the transition zone is significantly enhanced. It is suggested that more abundant cytoplasmic microfilaments could strengthen the cortical actin cytoskeleton arranged parallel with the cortical microtubules, which are found to be partially disorganized in this area. Due to microtubule disorganization, the functioning of cellulose-synthesizing machinery and proper deposition of cell wall might be affected and could cause the alterations in the growth mode. But, in our case growth of the cells in the transition zone under clinorotation was rather stable. Due to our opinion, general stability of cell growth under clinorotation is promoted by mutual functional interrelation between actin and tubulin cytoskeletons. It is suggested that a strengthened cortical actin cytoskeleton restricts the cell growth instead of disorganized microtubules.  相似文献   

7.
Growth of pea epicotyl in low magnetic field implication for space research   总被引:2,自引:0,他引:2  
A magnetic field is an inescapable environmental factor for plants on the earth. However, its impact on plant growth is not well understood. In order to survey how magnetic fields affect plant, Alaska pea seedlings were incubated under low magnetic field (LMF) and also in the normal geo-magnetic environment. Two-day-old etiolated seedlings were incubated in a magnetic shield box and in a control box. Sedimentation of amyloplasts was examined in the epicotyls of seedlings grown under these two conditions. The elongation of epicotyls was promoted by LMF. Elongation was most prominent in the middle part of the epicotyls. Cell elongation and increased osmotic pressure of cell sap were found in the epidermal cells exposed to LMF. When the gravitational environment was 1G, the epicotyls incubated under both LMF and normal geomagnetic field grew straight upward and amyloplasts sedimented similarly. However, under simulated microgravity (clinostat), epicotyl and cell elongation was promoted. Furthermore, the epicotyls bent and amyloplasts were dispersed in the cells in simulated microgravity. The dispersion of amyloplasts may relate to the posture control in epicotyl growth under simulated microgravity generated by 3D clinorotation, since it was not observed under LMF in 1G. Since enhanced elongation of cells was commonly seen both at LMF and in simulated microgravity, all elongation on the 3D-clinostat could result from pseudo-low magnetic field, as a by-product of clinorotation. (i.e., clinostat results could be based on randomization of magnetic field together with randomization of gravity vector.) Our results point to the possible use of space for studies in magnetic biology. With space experiments, the effects of dominant environmental factors, such as gravity on plants, could be neutralized or controlled for to reveal magnetic effects more clearly.  相似文献   

8.
Zea mays (sweet corn) seedlings attain an asymmetric distribution of the growth hormone indole-3-acetic acid (IAA) within 3 minutes following a gravity stimulus. Both free and esterified IAA (that is total IAA) accumulate to a greater extent in the lower half of the mesocotyl cortex of a horizontally placed seedling than in the upper half. Thus, changes in the ratio of free IAA to ester IAA cannot account for the asymmetric distribution. Our studies demonstrate there is no de novo synthesis of IAA in young seedlings. We conclude that asymmetric IAA distribution is attained by a gravity-induced, potential-regulated gating of the movement of IAA from kernel to shoot and from stele to cortex. As a working theory, which we call the Potential Gating Theory, we propose that perturbation of the plant's bioelectric field, induced by gravity, causes opening and closing of transport channels in the plasmodesmata connecting the vascular stele to the surrounding cortical tissues. This results in asymmetric growth hormone distribution which results in the asymmetric growth characteristics of the gravitropic response.  相似文献   

9.
Growth and development of etiolated pea (Pisum sativum L. cv. Alaska) and maize (Zea mays L. cv. Golden Cross Bantam) seedlings grown under simulated microgravity conditions were intensively studied using a 3-dimensional clinostat as a simulator of weightlessness. Epicotyls of etiolated pea seedlings grown on the clinostat were the most oriented toward the direction far from cotyledons. Mesocotyls of etiolated maize seedlings grew at random and coleoptiles curved slightly during clinostat rotation. Clinostat rotation promoted the emergence of the 3rd internodes in etiolated pea seedlings, while it significantly inhibited the growth of the 1st internodes. In maize seedlings, the growth of coleoptiles was little affected by clinostat rotation, but that of mesocotyls was suppressed, and therefore, the emergence of the leaf out of coleoptile was promoted. Clinostat rotation reduced the osmotic concentration in the 1st internodes of pea seedlings, although it has little effect on the 2nd and the 3rd internodes. Clinostat rotation also reduced the osmotic concentrations in both coleoptiles and mesocotyls of maize seedlings. Cell-wall extensibilities of the 1st and the 3rd internodes of pea seedlings grown on the clinostat were significantly lower and higher as compared with those on 1 g conditions, respectively. Cell-wall extensibility of mesocotyls in seedlings grown on the clinostat also decreased. Changes in cell wall properties seem to be well correlated to the growth of each organ in pea and maize seedlings. These results suggest that the growth and development of plants is controlled under gravity on earth, and that the growth responses of higher plants to microgravity conditions are regulated by both cell-wall mechanical properties and osmotic properties of stem cells.  相似文献   

10.
Data are presented of a comparative analysis on rhizogenesis in the Arabidopsis thaliana tissue culture growing in a solid nutrient medium under stationary conditions, clinostatic conditions and microgravity. Tissue samples weighing 100 mg. were set in the Petri dishes and placed in a horizontal slow clinostat /2 revs/min/. After 14 days of growth they were analyzed. On clinostating the number of roots formed from the callus cells was approximately one half the control. The formed root cap manifested no essential differences, in comparison with the stationary control, in the number of layers and cell sizes in its layers. In callusogenic roots, formed from clinostated cells, differentiation including root cap cells, proceeds without noticeable deviations from the norm. At the same time, gravireceptor cells do not function under these conditions. This is clearly displayed at a structural level in the location of amyloplasts-statoliths throughout the cytoplasm. The callus cell cultures experienced microgravity for 8 days. The number of formed roots under the influence of this factor was 36% relative to the stationary control. Root cap formation was abnormal. Gravireceptor cells did not formed under microgravity.  相似文献   

11.
Unusually large mitochondria are a rather scarce feature in normal biological tissue and string-like giant mitochondria have hitherto not been reported in animals. Investigating the role of inner ear ionocytes for otolith growth, large ionocytes of the saccular epithelium of the cichlid fish Oreochromis mossambicus were analyzed by imaging of thick sections with energy-filtering transmission electron microscopy. We report here that ionocytes do not contain numerous small-sized mitochondria as has been suggested earlier but rather few, extremely elongated megamitochondria. Since the particular mitochondrial structure is important for normal cell function, such megamitochondria possibly reflect a functional advantage in the context of the presumed role of teleostean ionocytes in regulating the composition of the endolymphatic fluid.  相似文献   

12.
Immunolocalization of an annexin-like protein in corn.   总被引:4,自引:0,他引:4  
Although calcium has been proposed to be an important regulatory element in plant gravitropic growth, as yet no specific function of Ca2+ in growth regulation has been discovered. Our recent studies on a Ca(2+)-binding protein in pea seedlings called p35 indicate that it is a member of the annexin family of proteins and may play a key role in growth regulation through its function in delivering polysaccharides needed for wall construction. We previously reported the isolation of p35 from pea plumules and the production of polyclonal antibodies to it. Immunolocalizaton analyses of p35 in pea tissues revealed high levels of staining in secretory cell types such as developing vascular cells and outer root cap cells. To test how general was the occurrence and distribution of this annexin-like protein in plant cells we initiated an analysis of annexins in the monocot corn using immunological techniques. Our results indicate the immunochemical properties and localization of corn annexins are very similar to those reported for pea. They are consistent with the postulate that annexins may play a general role in the regulation of the secretion of wall polysaccharides needed for growth, and thus could be an important target of calcium action during gravitropic growth.  相似文献   

13.
Early development of fern gametophytes in microgravity.   总被引:8,自引:0,他引:8  
Dormant spores of the fern Ceratopteris richardii were flown on Shuttle mission STS-93 to evaluate the effects of micro-g on their development and on their pattern of gene expression. Prior to flight the spores were sterilized and sown into one of two environments: (1) Microscope slides in a video-microscopy module; and (2) Petri dishes. All spores were then stored in darkness until use. Spore germination was initiated on orbit after exposure to light. For the spores on microscope slides, cell level changes were recorded through the clear spore coat of the spores by video microscopy. After their exposure to light, spores in petri dishes were frozen in orbit at four different time points during which on earth gravity fixes the polarity of their development. Spores were then stored frozen in Biological Research in Canister units until recovery on earth. The RNAs from these cells and from 1-g control cells were extracted and analyzed on earth after flight to assay changes in gene expression. Video microscopy results revealed that the germinated spores developed normally in microgravity, although the polarity of their development, which is guided by gravity on earth, was random in space. Differential Display-PCR analyses of RNA extracted from space-flown cells showed that there was about a 5% change in the pattern of gene expression between cells developing in micro-g compared to those developing on earth.  相似文献   

14.
Function of the cytoskeleton in gravisensing during spaceflight.   总被引:12,自引:0,他引:12  
Since astronauts and cosmonauts have significant bone loss in microgravity we hypothesized that there would be physiological changes in cellular bone growth and cytoskeleton in the absence of gravity. Investigators from around the world have studied a multitude of bone cells in microgravity including Ros 17/2.8, Mc3T3-E1, MG-63, hFOB and primary chicken calvaria. Changes in cytoskeleton and extracellular matrix (ECM) have been noted in many of these studies. Investigators have noted changes in shape of cells exposed to as little as 20 seconds of microgravity in parabolic flight. Our laboratory reported that quiescent osteoblasts activated by sera under microgravity conditions had a significant 60% reduction in growth (p<0.001) but a paradoxical 2-fold increase in release of the osteoblast autocrine factor PGE2 when compared to ground controls. In addition, a collapse of the osteoblast actin cytoskeleton and loss of focal adhesions has been noted after 4 days in microgravity. Later studies in Biorack on STS-76, 81 and 84 confirmed the increased release of PGE2 and collapse of the actin cytoskeleton in cells grown in microgravity conditions, however flown cells under 1 g conditions maintained normal actin cytoskeleton and fibronectin matrix. The changes seen in the cytoskeleton are probably not due to alterations in fibronectin message or protein synthesis since no differences have been noted in microgravity. Multiple investigators have observed actin and microtubule cytoskeletal modifications in microgravity, suggesting a common root cause for the change in cell architecture. The inability of the O g grown osteoblast to respond to sera activation suggests that there is a major alteration in anabolic signal transduction under microgravity conditions, most probably through the growth factor receptors and/or the associated kinase pathways that are connected to the cytoskeleton. Cell cycle is dependent on the cytoskeleton. Alterations in cytoskeletal structure can block cell growth either in G1 (F-actin microfilament collapse), or in G2/M (inhibition of microtubule polymerization during G2/M-phase). We therefore hypothesize that microgravity would inhibit growth in either G1, or G2/M.  相似文献   

15.
Hypergravity stimuli, gravitational acceleration of more than 1 x g, decrease the growth rate of azuki bean epicotyls and maize coleoptiles and mesocotyls by decreasing the cell wall extensibility via an increase in the molecular mass of matrix polysaccharides. An increase in the pH in the apoplastic fluid is hypothesized to be involved in the processes of the increase in the molecular mass of matrix polysaccharides due to hypergravity. However, whether such physiological changes by hypergravity are induced by normal physiological responses or caused by physiological damages have not been elucidated. In the present study, we examined the effects of the removal of hypergravity stimuli on growth and the cell wall properties of azuki bean and maize seedlings to clarify whether the effects of hypergravity stimuli on growth and the cell wall properties are reversible or irreversible. When the seedlings grown under hypergravity conditions at 300 x g for several hours were transferred to 1 x g conditions, the growth rate of azuki bean epicotyls and maize coleoptiles and mesocotyls greatly increased within a few hours. The recovery of growth rate of these organs was accompanied by an immediate increase in the cell wall extensibility, a decrease in the molecular mass of matrix polysaccharides, and an increase in matrix polysaccharide-degrading activities. The apoplastic pH also decreased promptly upon the removal of hypergravity stimuli. These results suggest that plants regulate the growth rate of shoots reversibly in response to hypergravity stimuli by changing the cell wall properties, by which they adapt themselves to different gravity conditions. This study also revealed that changes in growth and the cell wall properties under hypergravity conditions could be recognized as normal physiological responses of plants. In addition, the results suggest that the effects of microgravity on plant growth and cell wall properties should be reversible and could disappear promptly when plants are transferred from microgravity to 1 x g. Therefore, plant materials should be fixed or frozen on orbit for detecting microgravity-induced changes in physiological parameters after recovering the materials to earth in space experiments.  相似文献   

16.
Changes in the vacuolation in root apex cells of soybean (Glycine max L. [Merr.]) seedlings grown in microgravity were investigated. Spaceflight and ground control seedlings were grown in the absence or presence of KMnO4 (to remove ethylene) for 6 days. After landing, in order to study of cell ultrastructure and subcellular free calcium ion distribution, seedling root apices were fixed in 2.5% (w/v) glutaraldehyde in 0.1 M cacodylate buffer and 2% (w/v) glutaraldehyde, 2.5% (w/v) formaldehyde, 2% (w/v) potassium antimonate K[Sb(OH)6] in 0.1 M K2HPO4 buffer with an osmolarity (calculated theoretically) of 0.45 and 1.26 osmol. The concentrations of ethylene in all spaceflight canisters were significantly higher than in the ground control canisters. Seedling growth was reduced in the spaceflight-exposed plants. Additionally, the spaceflight-exposed plants exhibited progressive vacuolation in the root apex cells, particularly in the columella cells, to a greater degree than the ground controls. Plasmolysis was observed in columella cells of spaceflight roots fixed in solutions with relatively high osmolarity (1.26 osmol). The appearance of plasmolysis permitted the evaluation of the water status of cells. The water potential of the spaceflight cells was higher than the surrounding fixative solution. A decrease in osmotic potential and/or an increase in turgor potential may have induced increases in cell water potential. However, the plasmolysed (i.e. non-turgid) cells implied that increases in water potential were accompanied with a decrease in osmotic potential. In such cells changes in vacuolation may have been involved to maintain turgor pressure or may have been a result of intensification of other vacuolar functions like digestion and storage.  相似文献   

17.
Plant cells characterized by apical growth, for example, root hairs and apical cells of moss protonema, are a convenient model to address the problem of gravity response mechanisms including initiation of cell polarity. The fluorescent calcium probe, chlorotetracycline, allowed us to display the calcium distribution gradient in these cells. Irradiation by red light led to a sharp decrease in the Ca2+ ion activity in cells. During clinostatting in darkness the pattern of calcium influx and distribution changes inconsiderably as compared with control; in root hairs calcium is detected mainly in their apices and bases as in control. Addition of chlorpromazine to the medium probably increases the influx and accumulation of Ca2+ ions. Under data obtained confirm speculations on the Ca2+ ion functional role for the apical growth of plant cells and may suggest the participation of gravity in redistribution or activation of ion channels, calcium channels included, in the plasmalemma.  相似文献   

18.
For the study of gravity's role in the processes of plant cell differentiation in-vitro, a model "seed-seedling-callus" has been used. Experiments were carried out on board the orbital stations Salyut-7 and Mir as well as on clinostat. They lasted from 18 to 72 days. It was determined that the exclusion of a one-sided action of gravity vector by means of clinostat and spaceflight conditions does not impede the formation and growth of callus tissue; however, at cell and subcellular levels structural and functional changes do take place. No significant changes were observed either on clinostat or in space concerning the accumulation of fresh biomass, while the percentage of dry material in space is lower than in control. Both in microgravity (MG) and in control, even after 72 days of growth, cells with a normally developed ultrastructure are present. In space, however, callus tissue more often contains cells in which the cross-section area of a cell, a nuclei and of mitochondria are smaller and the vacuole area--bigger than in controls. In microgravity a considerable decrease in the number of starch-containing cells and a reduction in the mean area of starch grains in amyloplasts is observed. In space the amount of soluble proteins in callus tissue is 1.5 times greater than in control. However, no differences were observed in fractions when separated by the SDS-PAGE method. In microgravity the changes in cell wall material components was noted. In the space-formed callus changes in the concentration of ions K, Na, Mg, Ca and P were observed. However, the direction of these changes depends on the age of callus. Discussed are the possible reasons for modification of morphological and metabolic parameters of callus cells when grown under changed gravity conditions.  相似文献   

19.
During the growth and development of the sporophytic capsules of some moss species, negative gravitropism is changed for a positive one. Horizontal clinostat rotation induced unregulated growth of the sporophytes and their twisting; some of sporophytes remained straight, however. It has been established that the change of the gravitropic reaction is related to capsule formation and to the redistribution of amyloplast cells of the sporophyte graviperception zone.  相似文献   

20.
Plant experiments in earth orbit are typically prepared on the ground and germinated in orbit to study gravity effects on the developing seedlings. Germination requires the breakdown of storage compounds, and this metabolism depends upon respiration, making oxygen one of the limiting factors in seed germination. In microgravity lack of run-off of excess water requires careful testing of water dispensation and oxygen availability. In preparation for a shuttle experiment (MICRO on STS-107) we studied germination and growth of flax (Linum usitatissimum L.) seedlings in the developed hardware (Magnetic Field Chamber, MFC). We tested between four to 32 seeds per chamber (air volume=14 mL) and after 36 h measured the root length. At 90 microliters O2 per seed (32 seeds/chamber), the germination decreased from 94 to 69%, and the root length was reduced by 20%, compared to 8 seeds per chamber. Based on the percent germination and root length obtained in controlled gas mixtures between 3.6 and 21.6% O2 we determined the lower limit of reliable germination to be 10 vol. % O2 at atmospheric pressure. Although the oxygen available in the MFC's can support the intended number of seeds, the data show that seed storage and microgravity-related limitations may reduce germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号